1.Yim , M. S., Kim, Y. H., Bark, H. S., Oh, S. J., Maeng , I., Shim, J. K., Chang, J. H., Kang, S. G., Yoo , B. C., Kwon, J. G., Byun , J., Yeo, W. H., Jung, S. H., Ryu , H. C., Kim, S. H., Choi, H. J., & Ji , Y. bin. (2024). Deep learning-driven macroscopic AI segmentation model for brain tumor detection via digital pathology: Foundations for terahertz imaging-based AI diagnostics. Heliyon , 10 (22). https:// doi.org/10.1016/j.heliyon.2024.e40452 2.Pande , Y., & Chaki , J. (2025). Brain tumor detection across diverse MR images: An automated triple-module approach integrating reduced fused deep features and machine learning. Results in Engineering , 25 . https:// doi.org/10.1016/j.rineng.2024.103832 3.Lamba , K., Rani, S., Anand , M., & Maguluri , L. P. (2024). An integrated deep learning and supervised learning approach for early detection of brain tumor using magnetic resonance imaging. Healthcare Analytics , 5 . https://doi.org/10.1016/j.health.2024.100336 REFERENCES