Radial and angular parts of the hydrogenic wave functions, variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals ? Mr. Mithil Fal Desai, Ph. D. Assistant Professor in Chemistry Shree Mallikarjun and Shri Chetan Manju Desai College Canacona , Goa
-----------1 Schrodinger equation with Cartesian coordinates
Cartesian coordinates and Polar coordinates θ φ r (x, y, z) or (r, θ , φ ) x axis z axis y axis x = cos y = r z = r cos m =
-----------2 (r, = R(r) , Θ ( Φ ) (r, = R(r) , Y ( ) Schrodinger equation with polar coordinates We have,
(r, = R(r) , Y ( ) n = R nl (r) , Y lm ( ) Schrodinger equation with polar coordinates We have,
Radial component ‘R(r)’ of wave function ’ gives the distribution of electron as a function of radius ‘ r ’(distance from the nucleus) Radial wave function = R(r) Radial component of wave function Radial wave function depends on principle quantum number ‘ n ’ and azimuthal quantum number ‘ l ’ and have a common function.
Angular component ‘ Y ( )’ of wave function ’ gives the distribution of electron as a function of angle ( ). Angular component of wave function = Y ( ) Angular component of wave function Angular component depends on azimuthal quantum number ‘ l ’ and magnetic quantum number.
8 http://web.pdx.edu/~pmoeck/lectures/modern/TRM-7.ppt Wave function of Hydrogen atom
Radial variation of wave function Plot the graph of R(r) v/s r for 1s, 2s, 3s, 3p and 3d orbital