Radial and angular parts wave function

8,089 views 10 slides Oct 06, 2020
Slide 1
Slide 1 of 10
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10

About This Presentation

Radial and angular parts wave function


Slide Content

Radial and angular parts of the hydrogenic wave functions, variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals ? Mr. Mithil Fal Desai, Ph. D. Assistant Professor in Chemistry Shree Mallikarjun and Shri Chetan Manju Desai College Canacona , Goa

-----------1   Schrodinger equation with Cartesian coordinates

Cartesian coordinates and Polar coordinates θ φ r (x, y, z) or (r, θ , φ ) x axis z axis y axis x = cos y = r z = r cos m =  

-----------2   (r, = R(r) , Θ ( Φ ) (r, = R(r) , Y ( )   Schrodinger equation with polar coordinates We have,

(r, = R(r) , Y ( ) n = R nl (r) , Y lm ( )   Schrodinger equation with polar coordinates We have,

Radial component ‘R(r)’ of wave function ’ gives the distribution of electron as a function of radius ‘ r ’(distance from the nucleus) Radial wave function = R(r)   Radial component of wave function Radial wave function depends on principle quantum number ‘ n ’ and azimuthal quantum number ‘ l ’ and have a common function.

Angular component ‘ Y ( )’ of wave function ’ gives the distribution of electron as a function of angle ( ). Angular component of wave function = Y ( )   Angular component of wave function Angular component depends on azimuthal quantum number ‘ l ’ and magnetic quantum number.

8 http://web.pdx.edu/~pmoeck/lectures/modern/TRM-7.ppt Wave function of Hydrogen atom

Radial variation of wave function Plot the graph of R(r) v/s r for 1s, 2s, 3s, 3p and 3d orbital

Angular variation of atomic orbital