Rd sharma class 10 solutions some applications of trigonometry

3,706 views 65 slides Dec 27, 2014
Slide 1
Slide 1 of 65
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65

About This Presentation

Rd sharma class 10 solutions some applications of trigonometry


Slide Content

RD Sharma Class 10 Solutions Applications of Trigonomefry „

Heionts ANARRUGESE N

4
que

Distance betünen poht of obtewalitn and deck of
tower = 20m. 280

Age del op Hep dj bu = ade

He Her Het = AB

Now From Fb. “8e

Ac Ë a mue tangle

Temp = Adjacentotde
Opel cle.

> |tane = oppesill aide &8)

Adjacert side (00

20
> AG = 2olones
> N= 208

= 208

Height of tows H = 205 on.

2
Distance befioten tor ep Ladder and wall = 9500
ge op clevatiao 0260 SES

Length of halter = 4

Ac:

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

Now are forms a gt angle lngle
“ABC >

we know A

cose = Adjacent sde

tens

D Coser’= Be
Ac

FUE
ne
> Aa as lm

Jengin ch dadder & = Ian,

Distance between oct of ladder à mall = zen = Be,
Ange rade by dadder coo greed
8 = 60°
freight of walt tes = A8 A
Now Fe ABC forms a wight

angled ge
tone = paf sta

Adfacent dee

+ of watt tr
23 * Sen

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LeamCBSE in

pi E
Height of Me elective pole = 1070 =A0

Age made by Steel coe wl Proud Chorizontat)

en 4s
dt engin ol ré sde Ae.
Ab we vepreent- akove data 8 4
de + due tm te 4 1,”
dent à ner detengo ne
Jere
5

gue

Be IE ham ground = 00.2 Ag
Bretiration of Abg tia ges

9= 60°

Length e) He d=9=4

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry T
www.LearnCBSE.in

Ajout vepout The above data & $
ford due 98 da Then, he A

don a wight angled Mange, mac.

here "e
sie = oppofiln etde Ao=6 4
potro ,
shes = 4e
AC
> BS. 45
A 2
> de sx
Ya G

> b= 505m.
deg + A L = 504 en.

6
engin oh Abn betaxen poñt en grund and
Ki = aom.
Angle made >
y di ed ating coda goma & o
x is
?

ie

Oj Me Ki Le Hm
ay we vepretent de above data
et hoes They PE format

che Gor

5 figure
Qt anges Aérrgle
sh

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry

www.LearnCBSE.in

ue have
ane ppoctle atde
Adjacent cde
dono = AB |
Be
rc
> SCH
Es re
> e =p Ea
15

Date, by pythagerat Ionen we have

AS BCRA]

q = Ex) Be

+
9 1% = eur

Fe
Han = er
> Her 229) = Gouge
>

H = oxi)
229
(eur
ir

> pe

H= Qoxç

AUS = 39 4

o) Kile from dd eng,

RD Sharma Class 10 Solutions Applications of Trigonometry
‘www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
von LeamCBSE in

+ 1

vertical eue setrmounted by deg ff
Dietanee betwen lave and okterver = 40m. = 6c
Age of val of top eh aan a= 48°
Age of elevation of top of agit p= es

ete of digue ho
eight of tour = Ho = Ms

> iene
we vepvetent The above data \ Oy
ci A
Rom due Mn th dont
ag ges foren Area Y 4
“sete À En
à + E
se .

tap = ne
x

toed = ADtAS = hen

so to
> hero = 0(63)

> h= Holm)
= Ho(t#a34) = “Ox 0132
E Sgen

chelght of Tos tom height of fag stafp = Skagen

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

8
Trftlat Height of tree

het wu atume dat P

Thun | gie Tat erate made by aber Fark
wll ground oe

eight tron ground fo bole palate =.= 80
AGE AC HEL
> H= Ath S Aczli-him
DE we vaut the abe data ay due
as thos En VE ont be ad Aude
d E Mac

tom da

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applicat
www LearnCBSE in

ns of Trigonometry

> Wlis-h) = ah,

7 1SB-hG = ah
> GnOh = 166
bE EE echan denoutter
mA a Rabinal fig efectos of
> he (en b=0) lose
==
= CG
he tas

bent broken polat tron quema =IS RD.

tefghe ep the log stapp he Ap

Angle ch clevatte, oh tr oh dire = ooh
Ange of chatte ob batten Den
tet bean + Tower be Hw. = ag.

BY un wepretent JR above data &

dem of ye Men À orm gfe

Ce whith Acc

included. ufn
£898. |

Dy waht ole tegen 4
age fe en

tuo =

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry

www.LearnCBSE.in

Tone = BD
ee
> toto ABtAn a
Be >
> (= Hts _@ ZATÍO
© > &. the
a H Pf
> 3
> mes
Hager + Howe H= arm.

lo

Y. of stevation ey tp ep ture fon

Aer point + obcervatiior (A) <=

het
13
Angle
Now
gee

ae!

she tentked Som from that pobla to

Jo AR = 50m

e) elevation rom second parte» =

det us vepretent he
data À Ir o) then

dom ge ACD wth

Kong
ker

eco AH & 2

eight 4 teuer be
Hm = co:
Be = x mı

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
wnww.LearnCBSE.in

E 3% age

> HH

> nH = DR = cg
>

no) tours H = a8 m

het the degollado of tower
cohen ge ef elwahln Blase) be x wm
then accord te problere

<engte % The Ahadao wofin Angle 5) clevatin,
(p= 45) & (loto) m: = ep

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry it
www LearnCBSE in

The, above data À

FR we pre
dee mo Geo
dtargte nec Ú Beluled

A

Le Help of Howe be Hes As

3 wt eagle Felge ow h
of Me angie 0 then CES
dene 6 Az
Pong —&
tone = 46 tapo Ae
oe eo
> toned = H > ton ger
x Ed
As > xno=u
Rey > x= ho —O
subtHtlute x= 1-108 8 ©
Ho = u
E
> EH=108=H
>. (=p. = 106
> NS og
a Ratnalde deroaBatoy
> Hz 0 Ber xalinal ita facts of
Bolero an ane
= Palen
2 edgar of tower
= San) Helge u: oe
> 260m Sen

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications «
vw LeamCBSE in

‘Trigonometry

1.
ker u oh parachute at beat port As
O ave con a por
ground there show in CD = too
Angle > clevahty tron post c= 45% Cay
Angie of elevan tro polars = 60° Cp]
ber 8 be he A dem ame
parachute

fire Accord to
a te draw above cate” ke, tee foma Tre
due ar don atten,
AOE ire and Man Beluded PB LEE Lot
“AG. teorgte Poctuded.

Maximum height ef Tarachut-
Aron ground = 482 Ho

Dittance of Pat chere

Perachut gate to fu

measeıt — obsewaltin qu = x m.

TH th mht angie Hg one of The

eluded angle do thn

Adjacent side.

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

= lof mn)
=

3 X= St.
2% = 50 (aan
> X= 5004)

FRE Rémi

he sante bre Do

max ten umn heizen of qerachut from ground
HE 2366 0

Dittasce between post where parachut gal on

ground Ja oleo Br 13660

13.

Of doux, Hz AB = 156m

ER eo cect on TR ground

Na

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in.

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

| Angie of depresión of, object ALEMAN] = p= 4e Zane,
[axila]

[Age ep depresión op kiere

x

Land =a == Zags
[ax ate]
ler Az pe
Th we vepraent the above data
fh dame To hk ao
wlth ego

A

E E Ff oe of the

freluded ongle fi © Mm

toro = ppt atte
Afneent ide

tank = 4e, tang = A8
ee! ne
> toned = 150 tongs? 160.
4 ey
Ye 5.0 q = 60 —0

E
DRE spi

Per 50x22 160
a
? X= 150-508 = 150- Sola)

50 86:6 = 63-41

Dittance beiten object ale! = 65-4 en

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE in

an

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in
4e a
Angle of levain of top of tower rom
At pot À «2 30
Let we advanced through’ À toe by 150m
| Ro Ne= (50m
Ange of clevaliin of top of dower from second
Por, Bae

[3
Let Helge op “fewer Co = Hm.

Ay we vepecien! de above data
[5 qomo of ae foe 5
Age m Abm win zung. KE AE

Ah th vit angled tangle „one “of eluded ange
he / dhen

are = epale el
Adjacent de

iotx = 5-0

loro

HG + HA) 2 150

ASI
129.4

150 SHE SOKG 245K

|
|
|
RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
te

www. LeamnCBSE.in

16. A
Angle of elevattin of top of tower fon polea
Az 80°
Angle el elevation e) top of Tower ron pote
R= 60"

Distance between 428, AGE 20m
Let height of, aser co = Hm

Diitence beitucn Accord pot 8 fron doot of tewr-beiw
A à

Ep we veprerent Sa Abo data In une
dema due 0 Abm

diga En

eo

Sin wight agled Magie Ph one
of de eludes e
Je Hane

> AE) 02 Aes cox Maa

height of tour he sam
Dittanee o) toros from pot A= Bote) = 30m.

i=

RD Sharma Class 10 Solutions Applications of Trigonometry
| wew.LeamERSEn

RD Sharma Class 10 Solutions Applications of Trigonometry
www LeamCBSE in 18

+ E
i Let AG be De bufld®g and co be Be tour
hefgur of de balding fe 15m =he ae.
| Angie of a Of tp of too tem top of
balldég «= 0°
| Age of elevatiin of pe eh Oe row batten of
lufldig peter
Dittane between “toes bufldäq en ==

her high oo abore Lai Le ‘arm

| Ff we veprént the above data &
om of jue Ann Me ou
Ligure a down ue Lo

4 oleo draw Axlleo, ZAxe =.

vectargle

AG= XO =

here (Aa À à

B= bx = em 2,
a

Fight Magie

Se Noh Be eluded angte
hoe ze fie

PES
“Adjocent side:

Wade,

7 xB ans. -@

> 2tI5=a6(8)

RD Sharma Class 10 Solutions Applications of Trigonometry |
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

Let AB Le Pare „ Fées

> JR tower Fe 50 le diagerahf-

Dittance

Sp fer of oltewattin trou” feck “of
tower Bp = 40
Aa (ef etuvakin of top of Magie eo
Arge oy elevaba of Lotto cf lag’ pole (a p> 307
Net height of lowes 210° = nei
«height Of pole = ESP = 80.
the obove data vepretented
0 our wlth Lama?
SpE wight ange Joe o he “

| Felude ongle 50, den

dom of dure

Hone = oppotttr aide
~Adjacent le

RD Sharma Class 10 Solutions Applications of Trigonometry
| www.LearnCBSE.in.

RD Sharma Class 10 Solutions Applications of Trigonometry
wwnw.LeannCBSE. 20.

le + dope ae
| 76 a>
\ tonte mty zen AS
| ty = 9% LEA SB = Sem
Ye 18-86

= GIB = bx

= 10.392.

shetght =o} “tower x= 5:14 6m

height ob pole 45 Sen
19.

Let Billy tree height Le ne.
heb A, tune that the tree breken at
pop ©

Ange made by broken govt ce! wth ana
=

Pätance between tect of “ee do pot where ft
tourer ground ge E eo

her op tee sh 2 aceeel.= Actce

E

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

|
I

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

Tre above format & vepreient & Ehe form ey

déque où Ahoun.

cose = Adjacent side | dano shopper‘ side
Hupotercue Apart side,

NS Stree A ET

ket AG be the

Ange of elevation of top: of bulldite from P
220.
AB= height of tauxr = tor

Pale of elevation ch top of dagioff Aro r
B= 45%
ker heGht. of, Ylagsrajf = Bb am. à

al LA a e
Fe eve formation fi svepretented PAL
B fon of due at hewn Pr
wh ZA = ap.
Ty à he angled Arfangle Howey
Sr ong a a

ve e Peludo
4 Eee a

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

tower and go be the lag stagy.

a

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LearnCBSE in

dan

Henze tan ste Moya!
ar
AP= 108 tota = ap

toxetsa,
a

GE 14-32-10
52m

Big ef elagitalf Wa > 152m

dütane béleem Plant foot of toner = 19:52,
2

height + dhe gu = tbm 2 CD,

bflance of ght ton damp pot = En

Legis of shodaw catted by dam pat = fem = En
Let x be te angle Aubtended” ty edge

# |

ade do top ob gl and Lamp post: ze |
Su aloe deta À prete R dom /
Ce xo

tron dy O gemelo Cats:

Inavec. Tank = co

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

22

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LearnCBSE in

Hana = 48.
| tangs as
| à
| ee
|

of “amp post = AG = Am

ls Lua _prepeaty a Katar Hg

Gn Avec x ApEn

|
| Lote = LEA. Leerrenon “Angti
| Zoe = LAE 90%

| eg AA states

48m

| 2 het, damp Pott = 4 tm

22

height ep The boy PRE 150.2 Ans
| heizt op The building co 20m
Arte of euvatin From Aier poor eleyul 2 a 36°

=
|

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE in

RD Sharma Class 10 Solutions Applications of Trigonometry
| www LeamCBSE in

ler he moved
de
Large dy satten trom!

do A! and eye palio changed to

be

tebance bélier chtervatfon porte

<
= ABs ate!
A eat
Meg op tl abever ce eq my
ces co-ep
> co- (ee) a le
A vf EL

arse yet

New The olive data & vepeetentea 8 Chu! took

of dau a hein
To wht angled tte

one ef The angle &

> Ye 20 ety o es

mo 2258-0958
= 148.

SAX. Sn

Dittance walked Heard bulldog = Mm.

Sa
5
a

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE in

RD Sharma Class 10 Solutions Applications of Trigonometry |
www LearnCBSE in

23 . 7
Let height of tower -AB= "hoo
Aegle crade by edge or Hp copo Ahadew do top
of tows «= Got
Let Length of thada be 'xtm. = BD
then length of shadow E e+40)m Thee
age of elval th p= ad”

TRL aleve deta BU vepracated Bau A
br op ure at ran À
SE lo a Anlage ome Fours
at i x, q Cos
Rete kote un V7
taded agile fe E
Port, ee te = A
Adfacent ide A ne
TR à

Hana = 28 Hanpe ne
eo Be
tanto = sh Hane
= he
x —O +402 HE —@
from Da ®

740 = DW)

> 202 24 Dra

2045 m.

height of taser = 2085 en

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

dpt ej bullding = 20m.=46

der shelght ojo ave aleve deg = Km = ge
ergo of aos bald noo Con A
Arge dj elevation of beton tron «> ger.
Ange oh elevate Got of towers pe de

Let dittance between toute. 2 chtervation

de above data E weprumntäd fa

The dom of due at thown er

A ome oa) The eluded age >?

8 “ER ee de à e E
ff

hen ase = oppoitr

ae

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

ae.

RD Sharma Class 10 Solutions Applications of Trigonometry
www LeamCBSE in

25 2
het eight ch EA
Heights sp tale buflditg = 8m=cep
age ef depen of top of tate buat
Angie Of depresion of Labs of tat Lua po 45°
Phitance between two budget om = Ro

ABE A but garen th Mo
robin À
. € na I
Asse on + 9 1

A6 = (ar aye x
Te above honte E sepeeredey
BE dom ep que as trou

> 2° ao

MO > arerag

> ain =e Jar Bn = Alan
ay = lan)
= Han) Le arm AR Rate = Allem
height of muleta haPlding> Alardm.
Distance betucen balding = Ale nm

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in.

2

RD Sharma Class 10 Solutions Applications of Trigonometry
28

www. LeamnCBSE.in

26 .
der height of pedatat be ht

Male = bbe.

height el
O ej top of Mate ange
Angie of elevation of paper pe que
JR above data 5 vepueted à
dh Yorn ob are a shown.

ape abr ange Afargle oe
of te Felidea ale o

Ten at =>
FA apport stas |

HAjacent ee

ro

Hand = Be
De
paras che
be
Dee chi
be = Him.
rom 010 hera
à
PAR = bone

te
>

Ll ot)

A

Helge of qedatal = of

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

2. .
La height of ter = thn = 4e
Latta, + ver be Wem = Bee
angle op élévation from bank of vive 60 deme)
Angle ef Platón from 20m) away Me bank

q ve Be 86% [Asom

Thi above data 1% vepreseoted
I dons op digume oF shown

By wight angle age oo oy
Te Édudea age 0 Bien

Hove = ort atte |
= “hajacent ide)

+20 he -@
O HO + cross

7. +=
Pa 20% 2210

he M = 1028 < 108 om.
hefgne of
width of

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

4

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

22 given

Height of building. = two
Hee ef
“Angle

e
cable tower = ‘Wen eb

ey ckevattin of top of eme from top
of huida = co

Angle ef deprisa,

Hop of bufiding pos”
tthe above data À veprtientes
dorm d igure. as shown

à
CX = tx

bation ec) tower Arem

Let

CD= De exe = tm tat

Des Ae
opp Ade (xe) Mendo s
Eta a

EU Ge 2
> Axe Hm, |) arse
!

but Cp = +4

= AGE = FG ayn
he of cable towers = (Mr

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LeamCBSE.in ar

20: given . 5

Hein cf LSM howe = 25m = am» Aw

Ange of depression of aps a = 36

Argle of deprettion ch ahip 2, pe 48"

The above data & vepruentd

fom oh E mu then.

her

Dttance

betiteen Abe be
Km = ep

In sight rSagle EY ove
e

Peluded angle &e then

hae e
Le
themes 4e
E

+86 =3456, O

020» Re

> fail

vs Distenee “betiveen hip

= ASLAN,

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

zo. :
Angle of elevation of top of bullding dro
foot of “tower = 3072 4
“Ange of elevation of top of “lowes Aron
foot of han = ep
height of “Tower = SO mAs

Aer of bulla = ohm
es

Ti aleve A A ed à gone +

E00 do Plane = ppal aide
Adjacent arde

In aden SN re
ton p> de Hone = co
en Bo

Hlonco”= 50 | tas = h.

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

Em

®

me oh Re tual dou

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in os

3h

“Height of the bridge = Sem. Cael

Angle oh depreitten of banka ne «= 20° (en
Angle depression of bork a he p= 45116,
given banks ove on epale sles.

Distance beliveen banks ASE Abt 88.
JR above thfowmahin & weptieded Eu dom
ure a Ab

do ne ange ae Y on
Oj the Preludes age À e

Then

reve = were |

_ Aajaceat ae

5 (nes, a L
5 ake
tora = ae Yong Dane
ee cre
Hans = 30 30:
Be Se,
Be = 30% em 88, = 30m
= Bro
= sola)

hekween bank = 30(% +0 m,

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LeammCBSE in

ES .

ker two poles As co be of equal Heine a"

ABE Cp ahi

Distance between poles BD = 80m.

Let X be pot betiueen he. From X
Ange élevatin of mae bei a = bot

Ange of elevate) be p= oe
e Piz AS

ex. Van

Distance 3
+ {rom qele co
Dictonce of (Pear wer"

dr above deta le |

dem où her

a ee À 7 À
2 o

Te cluded a X) D >
plz side ji 74 ER

bo | —6
O MO Box = xnla) > Sox =3%
> iso» = 20 he 208

het o) poles = 208 m
Diane ch peht trem polea = 20

Dirtarce of pot from pole = com.

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in ss
33. :
Height of ee AB = 20m
“Arge

ge Of depression of poes sect es
Ange of dep of pol 2 deep = 30.
BC be ore pole 5 ES be other pole
re po axe 0 Spout ates
Lattin of Re e
8,6188,
Di above Boats di
vepresented 8 oros oh due ME
abro

To argot “régle one o) Beluded age o
oppostl MIR

Aspıeent ide

tap’: Ae
tenact= 20.
ve,
BA = 206
24 20% =
a
Lien + vives Sm.

RE en
3

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry

By given

www. LeamnCBSE.in

Meet ch diag Aah = Am = Be.
Met height ch tower = thm = 46

nage of clevattin of bation of doqua ue aot
Age oh levas of top oof gato pe gar

peat 0} ebtewa

Ti aba data lo vepréientes
of uve at shown

a sant ange Age

JE Retudea angle

Hon (be vp?

one

re

ans = gro!
tong ike lay aa
oe dote hey
Ar ar
Ar aD Mn
ten 0x0
he has
heey
Hav st > the x an
Bt Gn
= dl a Bslaty

het of Howe = sn,

RD Sharma Class 10 Solutions Applications of Trigonometry

www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

ot
35.
Let
Length of shadow be EL e A
be w= 45

engin Ad et be Ed olan

fun attitude fe PER
Let chedght oh tower be ‘hin = AB,

the above Fran À repretented 8

9 dom
o dígure a Alu er

A right ge ne ep SS)
enge fee then

fe
conti. € 24
Ty Rec An Ape.
Hana = AB Hop AE.
Be pared.
ons ch Month = sh.
Eu ara
h= à —O sata: hs. —O

D RO > ren
me a) = 22
>.

height ch Tower = alarm

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

Se 5
het AB be hehe of free à th ik broken at
Porc. and dep touche grout até d

Angle made ty tp &= 30°

Dütanee fren Spot of tree trom point where fr

toucha ground = 80 metre

wu above frfownatfin fk reprinted om of
8

dure mu Aron

hegnt of tree = Aas Arc
= Ac + ca

Ee a
age fe am

Et oprofte_atde

| Adjacent sde

Han sc = Ac

BA

AC = 10. en:
da

Aa = CAFC = 10, 20
Ke

heft ch bee = 106

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

‘RD Sharma Class 10 Solutions Applications of Trigonometry
ven LearnCBSE in

ES
hengn ch cabe comectzd to balloon = 2150 [ce]
tel tration ate wf
Age o of cate eft ground

a= ee
Height of batten fron grund = “him = AB
fa above data À weprtsented A, down
oh que © Aba

cin wight twhngle one of The

fecludea angie be Sen

[doo = oppesite sae | 2
hypatenwe

Bab > he 2

shif> Ab > ic .
de Bb BSG = 10458

Zu height of balloon shen ground = 101544 m.

38:
heéght of elf = Som = ag.

Age of elevan fren Man 2, à 30 [m]
Ange E dran mana, pe bo [mr
tance between “hie men = Man,

= amr em,
u above goma

veptiented E dom of
dee 05 hour

By sant age Monge me dj ue
focludes ange

Fes =

en

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

MM > MB BM, =

NG
Diktorce — belicccn men = OB meta,
5

3. ker
help of pele=him = kunt altttude rom Around,
déngih ef Ahada be ‘1
qe thar Lah
Ange of elevatin oh cust altflude be ©

The above data &

op dique à shown

Bn wight twang

included angle & 0 Then

ES
tone = AB
Be

vepresente E qomo

hey
7 02 tartoe4se
Angle oh tute attitude % 460

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

Per AB be me ‘hurtas

à

Angle of cialis an poh [Eté tatin ] à 2 be?
Aoge dj tlivalton trom pot QC Real à] B= ast
Dfitanee between Fifattahlne PQ = 20km

Be above Frfomatin tk vepractea a
Be den op iger at theres
Ta wight triangle 4 one + Th
fe Fe
ane = proie efde PEN a &
Adjacent eee. u 9 ps;
tan = ne. tanp= 46
ar aa
toast = AR ton4s?= a
AP AR
Are a AR = 4a, —
e © | 7
Ore > =
© > Arras = Bene = re)
> 205 a/a ie
(SE) > AB = 208
Natt
AB= 20%
== ILA =10 (2-6)
AR = AB: .
8 = ABE to(3- A) = 1033) = 12:64 L.,
Ars “Ae =
Be = to (Ga) = 10x 0-82 = parle
Station 4

should Aend The team and they ham
do Haut 4.22 km,

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

4

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

+
At

Hetgnt eh thip chem unter Level = tom = AB.

Angie of elewatten oh op of clit x = 45

Ange oly deprcion ef Eten o dif x
het Mp cD = thin

dittance of ship “rem (Epi aux. cé.

ES

Hee a ame am €
Ln m
Ten heuer oh elfe pater à N
Goran.
BH love dato vepeetented |
5 don Noy ue os me 5 =

La vint totengte, FE one ch The theluded ange à

Ou Mer Tre = oppartz ade
Afeenteise

das 4sh= cx darse > xp
Ax 22
do. Ds
Ax = ‘ae A = 10%
“ao
e cht) = don = inten
dûtare tetuces fp + Cth = 108.

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
veo LeamCBSE in 4

42 :

Hetght of Shfp above wale tel = Im = A8

Angle of elevation de Hp of chp Chey «= 60°

Angle of deprétien of lato of Hi B= zur

Hegpt ef hf = ep
Dittarce between chip & Hit = ax,
eigen of Hl above chip

xa

do A
Hebe of HW = rm à 8m
Whe above data vepacta E ®
& dom

Oh dure a hour
fin wight Mège Ff oe of Peludas ange Ro
Ten tose = oppottte «Pde

ajacent Tae

Hans ex tong = ao
AX Es
Hantot= & rt
AK. Ax
Axe à Ax= 9%
Key

2280 > A= 24m
a a
AX = 8m

ent
2 dent of (Ar) ma.

Diitonee between HUA SH = Alm

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in |

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in 44.

height eh temple 1 (48) = Som.
Age of dpi ep top d tere, w= 36%
Arge of deprettion of batten of tenplea, fe ect
height of temple 2 (09) = Win
Lifdin ch river = Aa,

us

fu above data ft vepretented
th dem of dique at than ©
Lo sign age A Ome du

fretuded angled ©) hen

Wut,

Het of temple 2 =

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

44

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

het Aeroplane travetted em À de B 5 16 eu

Angle of etvatin of pont Axe

Angle of elevation of port 6. B= 307

Bocomebyes.

height of arreplane diem Grand a

Détance havelled A IS tes=Ab-ra

velocity En speed. = Aüknce “havetlea fine
à

above data à vepretented & Horn

iure 027 Shown,

E Pa
Le
xQ
Hanse? = 3000
xQ
XP = 3000. m XQ = 300083
PR = XR=-KE = 3000(3-1)w
ua = Rd BeelOY - za Ty
one v —_—
200x 0.132. zn
= 1464 mlcec
ap ah o = ern tue

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

45.
Let Atwoplare traveled rom Ares fh 10 Leur
Angle of elevation of pot A= «= 68

Angle of ctevation of ¿Porres B = Se

shetght of arvoflane trom ground = thm =AP= a8
Dirane “havetted fh to lect = AB PQ.
Apeed =

Déttanée” “havetted He
JR Abe data &
ds u
Bs vn

re clics

veprüented

5 fom ch

tanso= 4 stonp= Be
Px. | xa
E IE A
Pa = fotoo | oy
XR EB ben
PR = aa = > 2

bie e
eG ae

Apted= £8 = Bote = 20 x Cong?
= ES

LE |
dores
= 24003 bal.
2 eed op Aeroplane = 20003 bag:

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LearnCBSE in

4

"ABs helfe of tower = Som

cre Het of UGC plo
| Angle of depa of top oh lala x= 452
| Angle Spain oh orte ofp bug pe 0
Du above data & repre ee form $
due o han.
M wt age (one Preluded
age Eo Then y

Hare = oppoft fate
apercu
Han cp Me A
tx Fe
Lane ax toners off
= ©
AK = cx. Ex = 80"
©

height oh busted (polo = BG

Diane between pole & tou = 50 m,
ime ze

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in 4e

At 5
Dittance ketiveen treet = bom: Leo]
Height of deco thee = 20m. co)

hi Ca),

det height of Fever tree =

real of depreccton seen heand tee top An Ht bee
top 545

formato, À vepraented E dorm of fare)

|

Mi aloe A
a hon

Do Br drag Ye d te

Kane = te
Adjacent ride

draw) cxLAe, Cx = BD = Com.

Feluded ange Lo Thin
Naini

XB= cn = AB-Ax

tonus A
ex

tqs Ax à Allem
bo
KB= Co = Na-ax
= to-bo
= 20m
heat cp fecond tree = tom

bete of HEE ee = 20m

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
wwnw.LeannCBSE.in

41
48
AB be the tee bean eos
stom déttance "aro trom “Wee (Angle of elevaba |
be xk ot potter
| trem dittare "eo from tree Angle off claros
| ke p atipèt a
| SR above data oR represented & me

[fom of diguie a1 thou

Bh nr hfe ff one of
le fecludea angle lio teo

— OE
Haro = oppodt aide Lt
] Adfoent far er © oi

| aw AX ee det & ='am,

Hana =

a | “top = Ax
| Pa ex
tone = An tape ax
xra ET
cobe= ura cotpe ab
| AK: TAK.
| ara 2 ax cote tbs axcotp
=9

O-O > (erb- (ata = Axcotp- ax cote

> beas aces

Hana took.
| PAK 0-0 tan tang
ara = tong |
A = reptan.te
| Heégbr of top from ground = 004 = fap =

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

aa
Helaht oh vestical tower

FR.

Angle of elevatin of top from x, a = 60°

Arge of elevates of top! trom Yom above x),
Be 45

The above ornato epreiented & foro ofr

Pique der

Ty wget bg oe) of Te

Beluded age 40 thew

es

[Hans = oppoite ae
L___ Haren te
Draw AY PO
"RAP = 40m, AY= Px,
A = (PQ 4.0) mn.
todas? = ag tonceth re,
AY Pe
Ag = ay Pre Pg
=
> Pago ay 3
bur Ey Pa — 40» to
al
PO B~40G2 re > PRLB) = 400,
FRERE Gis
Ga SEL = 20GLAey = 20(3+ 03)

Hee of tower Sb" = 20(2+.9) m.

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

Let cloud be ak her Pa (Feprerented |
Avon lake déve |
From poil x, 25e0ra above fhe dake angle
of elevotitn of ep of elsa a = 158

ETES

Ange oh precis of had A e pa gee

dere Pas PQ! Gray Ay ire
Jet Ag = hm AP

Pa = bhrom

TR above data & vepracia |
& dom obs gure as chown
Do right Eve

angle Ke Jun

ay AY
> 0r66=h 2 AU = x + Chey
> ay i Den
Da 7 Ash —D

AmOsD ts hr > Shh = 2x 2600

eu > = sooo

8
SoG = 1830-8302,

shefgnt of cloud above late = bra

1820831 + 2600
= 4300-8319, m.

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in |

RD Sharma Class 10 Solutions Applications of Trigonometry
von LeamCBSE in

5
let x be got hr meter above tate

Ange of elevattin of cloud den x = x.
Ange of elepresitin of cloud “épléehèn Lake =p
shetght of cloud rom Lake = ra
A A els re

| chew xa, AOS. tm

Ñ APEX = Mien,
Ditarce of

2 cloud fron pote of obtervate,
xq

FR above data repented à dot Oh dl
a thaw,

Do Aaex Rava
tank = A
Era tonp le
bre lr
© No

Dos axe 20

Tr ana tonp- tana,
core = ANG gn wy
XQ beca
> xQ= 2haex

amp tora

eh Cloud from plot of obtervekin
= 2bsecaltonp-tone,

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

Sa

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

Let Fe be “Ambit of Araplane rom ground.
KEN to ellos où opel elder of
| te anopue. ate

Angie op deprttlon of € tron hax

Angle of depresion of Y ón =p
IRL above dato do Nepeetentet Ffm of
due a chou. ek

Lo vight Coa" one
of Reluded angle fo Mme

lane = pair &

¡EM
| Wire pe
xe
xa = fe
Fane SEP
xQret = Pa, fag ea (ord
Fong ES = al
| > in

= ip stoop”
Fase. tang

| > Pas done. top
Tana Hong

e evoplane = Tant: tong ele
“het of Sep Héron

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

ss

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

Spa ë pat segu ae & tower help.

Angle of elevation À e Axor Pau
Ange of elivation of @ Home
Du above hdomatin E vepresented & dorm of
dure at thes |
By wht Andre A oe ob me F
Peludas ange fio, un

Draw GX EAB) PEE AK APs qx i
D dex By aer
Hope ex Hon « SAB

shegpt of fotos = a tans ane tags
Dittoree bf port # tuer = allims-tanp)

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in 65

Sá ler 46 be daddy aug ak an ela
a to ground

when The foot & pulled. through ditarce ‘a!

Let Bel = "Ben and AA
age of elation he = B

new

UR. above thdommatfon fh represented porn op

dure of thou

Ler ard groud Be AB = A8
Ax Bray

Ba nace:

sina = AR 2y Shas gb y
ae AB

dosa = EL = Com
ne

O-0 > exp- cosá = A —

CT
© CES b

> [Re cue cop
EAN

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

|

| RD Sharma Class 10 Solutions Applications of Trigonometry

www. LeamnCBSE.in

55 Leb heh ch tower be ho
| “Angle of elevation at point A or ground = x

= Pe

| het @ be fob ‘bin abe fe A

angle of depresstin of foot of “louer chow 8e p |

ES above deta & vepeeded 3 dor ob Figure
IS

craw PX LPR

Tn arex

thanx = Po
ESS

tod re

tg. ex

>. es Se bet boto cat
eight oh tour = beton cat
Se:
Heégt ch obtervey 15m

Height of “rower = Pa = 0m

E of che above The vltewer eye = 3015
Yes 285m,

Distance betüen “tous & obterver XB = 286%

9 be angle of cat op touxs tp “on eue
TR above data & vepretented
dome of fhe at than
hon di tono opc ate

Mjacent (Pe

RD Sharma Class 10 Solutions Applications of Trigonometry»
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
vena LeamCBSE in

tono= OK > 265
ES

Age elevation = qe

ae

> 0e tala = 400

SF het de be heu Of éd = 15
deg à Pete 6 ti gio ate
ler Pe be

The above Hgormattin Wk vepretented E form of
| dique at chown,

equal Akttance Ken

BC = Leg of dee

Sic Me y Be Le
a 2 Ba

> Rc

LSO - dam
a

cha Fe AE , @zuaa., x4 LCA, Waite

a
cz = fi
&
e
Y
CE= y
D XC= 11011. HS

ss
For bey a

deg dj iq e+ won

Angle made by Ag ut ground =
For boy 2

height oh buttding CD = 10m.

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

AC = 060, Ag

51

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in 58

Ange made by ththg win taa] hp Bo 45°
engin ch KR Stead of bey >
a! hi meet much be ‘De

E wepracated & dor ob

Pp both Te

ae above Bematter
qe o chown:

draw &L Ac, YP4 ee

La sex
An ae = ex
Ax à
Shae

Be, et Bx en
CNT eae

BY = BR-xy = So-10m

40m

Hem 4% 4e eu
es

ze > Bb=40Gm

+=
ee

length 4 read or Shing + boys = ola
sa

“Heght oh Horses AB Som

heigpt op hi ep = "bien

Fogle of agotó of top ch Mil Arm foot of

Howe «= 60!

te ch elvan) dep oh trie fon toot of
Wi pe aoe
de abe formalen wepretented dom of

igure u than

RD Sharma Class 10 Solutions Applications of Trigonometry
| wmw.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
vena LearnCBSE in

fon 49. ;
hades

done opp = na

od La
LL: 50 =
Ee 82 ec son
peep
| ve: op date
adj ce) 6
B= of to = Soxs= 1
chs Be SOK: ion
sof o
Rest eb Het = Icom.
bo:

Me be boat 4 and & be : Boat so
bergen op AGH oe be can

Distance beliveen 6,4 = 1000

Ange of elevation oh Ados, « 2 26
Age d elevatiin of A from &. pee
Bix above Adornatn Pe repre ted
Be dome of due at chown
here I

à acer

donzo'= opp -
oy

BB Mic

Monge AG > Ans eg,
CA à 0
O+® > Berea

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

5

|

| D Agox

| :

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in

hr)
Sé 100 4a
Gr ar Gy

= Jools = soso

hefgue of Ah house = 5068-1) mts

eig op bullae ae Gorn.

chetgnt oh damp pat ep = hm,

Angle of depretefon of top of lamp pat from
top of bula fog «= 0.

Angle eh cepas Of halo of tony pet drove
Ao ef bullditg p= of

The, aboe fagormatíen À vepreceated th tke fom

o) figure a thowa

draw DX-LAG , PX ZAC, CD =AK

AC = Go-h) & m —O

D aeca Loup = 48 => ong,
‘ac

= Lo
ae

? ACE Lo = 2080 —@

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

co

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in u

trom 0:68
Goh 20%
bo-h = 20
be 40m

shetght of lamp port =4om
Diitance between damp FAA bufldrg Ac = 20m.
Difference betivern hedghtt of bulldihg & Vomp pour
= Bk = 60-h= 60-40 = 200
62:
Hedge Pop Aa howe = 'h metres, = AB
| sas be tuo thie en oppaite Rdn of ht boue
Arle of depneitfn ob £, from top oh LB tomes
“=
Ange of depresión of & tom top of Light heute=p
wequived to prove that

E AN
ane ang 7

the above Format Ri represented fh The dom
of Figure a thous |

A
[Ln nass, F
fone = opp. Ag h |
| ay Se
se= b o à
Hana 5 | |

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in ba

|, ames,

taps AB + 65,=h.-0
Es, top. ©

O+® > Bree bh 4b
tom Gon

> Sy = aj

Pilkonce between cana =

Cana tong)
Tone. tn

hltan rt
Rhone T tan), metres. |
Yana. tong, |

68 Heigpt of tous AB= Some
GAG be ten car

Angle oh drpracfin dj €, From top of “lorry
Angie op \deprrition of & rom top ef lowes p

30
= bee

Ditante “between cove je.

Whe above information fe veprciented Po form of

jure a thou,

Zo AARC
boop = qe
E
tante
ES
2

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

Pätance ef tara

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in &

Atane between cart GG = 100.5 mir

vom tawer

Sosa mir

Pltarce of Cars trom done = Sif my

4

Height ch “lowes Ae = 1000

ho:

He of voce ep
Age oh clivatlon „op top of meet Arm top of tous

A Ke ae

“Arge of clivaltiny dp, Bop oh roch tom bation of tous
Beast

the above data & veprcentes Jorn Ob dure

0 hour €

Drow AXLCD

402 AB = 100m

XA = pe.
Mn Acxa, tone = ox
Ax

> tue Ce

as
> be: AD

In Ace, tan
Ge, tonp= dass ootex |,

ve

Taro tor ex

ES D bes wor ©

Hem D1® torero cea à ext. neo

> ex = 100

ER x Gary
sale, Nea
height of Mil = 107 olmo = 150 (ar) mil

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in 11

RD Sharma Class 10 Solutions Applications of Trigonometry
ven LeamCBSE in “4

65. Hear cp E ‘boue -AB= 150 me

Let G4 be wo abia appnonchifg fach other
Angle of depreicion ch &, à = 20°

Angle oh depeettion oh 4 p= 4°

Díitaree — belioces cba = 9%

Wir above data À wepretentet €

Be ho oh Fe a theron

In 4%,
e
tanp = na.
es,
tas 45° 150
Es,
gs, =150m | BS = o
Si = 696 = ISOC mate
Dittone — betiveen aha = hf) mir

Hecht of Tower = AB = Sm

Hedpt oh Flogitafj ec = na
rele of eval of top op qiero pp = sr
Angle of clivallin Labs oh flagitoty BE 45°
Th above data

% vepretented & foun of

at homo
Kars Ape Baw Woe
rt

> bas Sm

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LearnCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
www LearnCBSE in

LA 1
Lo año, tore = Ac |
AS

ane = AS tee - hee

À 5

Gs ber
y

hres G8 heslo = Soria = 3ormh

eut oy plagtop cut

64: Heeght of bower age mt
ber pit © ke dott tom 8, -Angle oh elevation Leu
Pofet D be 9 mis) som 8, “Angle of elevatin be p.
de sp ya menthe | peau op =a4

véquéea fo prove that he Gate
Te (Above, date Yepracated 2 EE tom! ofp dee
treten.

Bo 4nec, tanx =

tana

4lane x 9 cota
36 “Cone. cota)

We 3
be WB = Gente

: hero q tower = bate

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in

RD Sharma Class 10 Solutions Applications of Trigonometry
wwnw.LeannCBSE.in

48: Hehe ch UGK boue Ag = Dm
het GA S be ah détarce hekueen Che Ge
Ange of dépit of & Gee se] sac

| ge paie à 5 Cpe pr]
‘She above data

os than
Dam =
oops Ae .
tS, Wat
tangos ho
ES
Bho E A i
em
Bo EN de» de
Be,
tms
CA
= ha ©
O-0 => Rs,-85 > hey
Res = hia)
> be 200 , wal
Ter Sl root
WO (Waa gy = 2133 ate

ede E boue = ates m

RD Sharma Class 10 Solutions Applications of Trigonometry
www.LeamCBSE.in