rDNA- Restriction Mapping, PCR, Reverse Transcription- PCR.pdf

Mithra30 95 views 48 slides Sep 30, 2024
Slide 1
Slide 1 of 48
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48

About This Presentation

Mapping


Slide Content

RECOMBINANT DNA
TECHNOLOGY
Unit III

Restriction Mapping
•Restrictionmappingisaphysicalmappingtechniquewhichisusedto
determinetherelativelocationofrestrictionsitesonaDNAfragment
togivearestrictionmap.
•Restrictionenzymesareendonucleases-oneofthemostimportanttoolsin
therDNAtechnologythatrecognizespecificsequencesonDNAandmake
specificcuts.
•Theseenzymesareproducedbybacteriatoprotectthemselvesfrom
bacteriophageattack.
•Theseareclassifiedintofourgroups:typeI,typeII,typeIIIandtypeIV.
TypeIIenzymesaremostfrequentlyusedformoleculartechniques.

Restriction enzymes
•TheseareDNAcuttingenzymepresentinbacteria(prokaryotes)thatrecognizesthe
specificsitesintheDNA,calledrestrictionsitesandmakeaDNAdoublestrand
breakatornearrecognitionsites.
•Aftercutting,thenewlyproducedDNAendswillhaveeitherabluntendedor
sticky(staggered)end.

Restriction Enzyme/Endonuclease
RestrictionEnzyme/Endonuclease“Alsoknownasmolecularscissor”
•TypeIenzymes:Theyarecomplexmultisubunitcombinationrestrictionand
modificationenzymesthatcutDNAatrandomfarfromtheirrecognition
sequences
•TypeIIenzymes:CutDNAatdefinedpositionsclosetoorwithintheir
recognitionsequences
•TypeIIIenzymes:Theycleaveoutsideoftheirrecognitionsequencesand
requiretwosuchsequencesinoppositeorientationswithinthesameDNA
moleculetoaccomplishcleavagetheyrarelygivecompletedigests
•TypeIVenzymes:Recognizemodified,typicallymethylatedDNAandcleave
atthatregion

Restriction Mapping
•Someenzymesrecognizefourbasesasrestrictionsitesandmakefrequentcutsand
generaterelativelysmallerfragments,whilesomeenzymesrecognizesixbasesoreight
basesandmakerarecutstogeneratelargerfragments(e.g.theNotIrecognition
sequenceisGGCGCGCC).
•WhenalargegenomicDNAisdigestedwithafrequentcuttingenzyme,millionsof
DNAfragmentsaregenerated
Example of restriction enzymes and
their corresponding restriction sits

Restriction Mapping
•Separationofthesefragmentsbyconventionalagarosegel
electrophoresisresultsinnodiscretebands.
•Therefore,rarecuttingenzymesareusefulforgenomemappingas
theygeneraterelativelylessDNAfragments.
•Afterdigestion,DNAfragmentsareseparatedinagarosegelusinga
specialtechniquecalledPulseFieldGelElectrophoresis(PFGE).
•Usingthistechnique,DNAfragmentsofupto10Mbpcanbe
separatedasagainstlessthan40kbpwhichcanbeseparatedusing
conventionalagarosegelelectrophoresis

Steps in Restriction Mapping
Preparation of DNA for restriction analysis.
Restriction digestion of DNA.
Separation of restricted DNA.
Collecting data.
Construction of restriction map

Restriction Mapping

Restriction Mapping
•Restrictionmappingofthegenomeisusefulonlyforsmallergenomessuchas
virusesandbacteria.
•RestrictiondigestionofthelargegenomesproducesmanyDNAfragments.
Whenthesefragmentsareseparatedinagarosegel,DNAfragmentscannotbe
viewedasdiscretebands.
•Anotherversionofrestrictionmappingcalledopticalmappingisusedfor
largergenomes.
•Inthismethod,DNAfragmentsarenotseparatedinagaroseafterdigestion.
•Restrictiondigestionisdonebyplacingtheisolatedchromosomeinagarose
solutiononamicroscopicslideandallowingageltoform.

Restriction Mapping
•Whentheagaroseformsthegel,theDNAisstretched.The
restrictionenzymeisfloodedontheagarosegelcontainingDNA
andthemixtureisincubated.
•ThentherestrictedDNAisobservedunderahighpowermicroscope
andtherelativelocationoftherestrictionsitesarevisualizedas
gaps.
•Fromthelocationofgaps,therestrictionssitesaremapped.
Saraswathy(2011). Concepts and Techniques in Genomics and Proteomics, WoodheadPublishing Limited, 77-93.

Application of Restriction Mapping
•Identificationofrestrictionsites
•Insertionanddeletionstudyofagene
•Insertanalysisduringcloning
•Verificationofthesizeoftheinsertduringcloning
•Mutationstudies

Restriction Mapping
Overview
•RestrictionmappingisamethodusedtomapanunknownsegmentofDNAbybreakingitintopiecesand
thenidentifyingthelocationsofthebreakpoints.
•Thismethodreliesupontheuseofproteinscalledrestrictionenzymes,whichcancut,ordigest,DNA
moleculesatshort,specificsequencescalledrestrictionsites
•AfteraDNAsegmenthasbeendigestedusingarestrictionenzyme,theresultingfragmentscanbe
examinedusingalaboratorymethodcalledgelelectrophoresis,whichisusedtoseparatepiecesofDNA
accordingtotheirsize.
•OnecommonmethodforconstructingarestrictionmapinvolvesdigestingtheunknownDNAsamplein
threeways.Here,twoportionsoftheDNAsampleareindividuallydigestedwithdifferentrestriction
enzymes,andathirdportionoftheDNAsampleisdoubledigestedwithbothrestrictionenzymesatthe
sametime
•Next,eachdigestionsampleisseparatedusinggelelectrophoresis,andthesizesoftheDNAfragments
arerecorded.

Restriction Mapping
•Thetotallengthofthefragmentsineachdigestionwillbeequal.However,becausethelengthof
eachindividualDNAfragmentdependsuponthepositionsofitsrestrictionsites,eachrestrictionsite
canbemappedaccordingtothelengthsofthefragments.
•Theinformationfromthedoubledigestionisparticularlyusefulforcorrectlymappingthesites.
•ThefinaldrawingoftheDNAsegmentthatshowsthepositionsoftherestrictionsitesiscalleda
restrictionmap
•ItispossibletodeterminethepositionofrestrictionsitesonaDNAfragmentbydigestingitwith
variousrestrictionenzymes,singlyandincombination,andanalyzingthefragmentsizesobtained.
•RestrictionmappingusedtobeakeyprocedureforcharacterizingaclonedfragmentofDNA,
butthisisnowmoreeasilydonebyDNAsequencing.
•Nevertheless,analysisofrestrictionsites(orfragmentsizes)isstilluseful,forexamplein
comparingthechromosomalorganizationofdifferentstrains.

PCR
•PCRisarevolutionarymethoddevelopedbyKaryMullisinthe1980s.
•PCRisatechniquethattakesaspecificsequenceofDNAofsmallamountsand
amplifiesittobeusedforfurthertesting
•PCRisbasedonusingtheabilityofDNApolymerasetosynthesizenewstrandof
DNAcomplementarytotheofferedtemplatestrand.
•BecauseDNApolymerasecanaddanucleotideonlyontoapreexisting3'-OH
group,itneedsaprimertowhichitcanaddthefirstnucleotide.
•Thisrequirementmakesitpossibletodelineateaspecificregionoftemplate
sequencethattheresearcherwantstoamplify.AttheendofthePCRreaction,the
specificsequencewillbeaccumulatedinbillionsofcopies(amplicons)
The targets in PCR are the sequences of DNA on each end of region of
interest, which can be a complete gene or a small sequence

Principles of PCR
•ThewholeprocessofPCRinvolvesthreemainevents,Denaturation,Annealing
andElongation.
•ADNAfragmentofinterestisusedasatemplateandapairofprimerswhichare
shortoligonucleotidescomplimentarytothebothstrandsofthetemplateDNA.
•ThepurposeofprimeristoinitiatetheDNAsynthesisinthedirectionof5‟to
3‟.
•ThenumberofamplifiedDNAortheampliconsincreasesexponentiallyper
cyclethusonemoleculeofDNAgivesriseto2,4,8,16andsoforth.
•ThiscontinuousdoublingiscarriedoutbyaspecificenzymecalledDNA
polymerasewhichsitsattheunfinisheddoublestrandedDNAcreatedbytemplate
DNAandprimer.

Principles of PCR
•ForfurtherextensionoftheDNA,thepolymeraseenzymerequiresupplyofother
DNA-buildingblockssuchasthenucleotidesconsistingoffourbasesAdenine(A),
Thymine(T),Cytosine(C)andGuanine(G).
•Thetemplate,primer,polymeraseandfourbasesarethemaincomponentsfor
polymerasechainreaction.
Note*
•Initialdenaturation:HeatingthePCRmixtureat94°Cto96°Cfor10mintoensure
completedenaturationoftemplateDNA
•Afterthecyclesarecompleted,thereactionisheldat70-74°Cforseveralminutes
toallowfinalextensionoftheremainingDNAtobefullyextended.

Components of PCR
DNAtemplate:
•thesampleDNAthatcontainsthetargetsequence.Atthebeginningofthereaction,high
temperatureisappliedtotheoriginaldouble-strandedDNAmoleculetoseparatethe
strandsfromeachother.
DNApolymerase:
•atypeofenzymethatsynthesizesnewstrandsofDNAcomplementarytothetarget
sequence.
•ThefirstandmostcommonlyusedoftheseenzymesisTaqDNApolymerase(from
Thermisaquaticus),whereasPfuDNApolymerase(fromPyrococcusfuriosus)isused
widelybecauseofitshigherfidelitywhencopyingDNA.
•Althoughtheseenzymesaresubtlydifferent,theybothhavetwocapabilitiesthatmake
themsuitableforPCR:1)theycangeneratenewstrandsofDNAusingaDNA
templateandprimers,and2)theyareheatresistant.

Components of PCR
Primers
•Shortpiecesofsingle-strandedDNAthatarecomplementarytothetargetsequence.
•ThepolymerasebeginssynthesizingnewDNAfromtheendoftheprimer.
Nucleotides(dNTPsordeoxynucleotidetriphosphates)
•SingleunitsofthebasesA,T,G,andC,whichareessentially"buildingblocks"fornewDNA
strands.
Mg++ions-cofactoroftheenzyme
Buffersolution
•MaintainspHandionicstrengthofthereactionsolutionsuitablefortheactivityoftheenzyme
RT-PCR
•ReverseTranscriptionPCRisPCRprecededwithconversionofsampleRNAintocDNAwith
enzymereversetranscriptase
https://www.ncbi.nlm.nih.gov/probe/docs/techpcr/

Primer Designing & Criteria
•PrimerLength–18-24basesistheideallength
•Primermeltingtemperature–52-58°C
•Primerannealingtemperature
•GCContent–40-60%
•GCClamp
•Primersecondarystructures
–Hairpins
–Dimers

PCR process

PCR process

PCR Process
Step1:Denaturation
•AsinDNAreplication,thetwostrandsintheDNAdouble
helixneedtobeseparated.
•Theseparationhappensbyraisingthetemperatureofthemixture
(94-95°C),causingthehydrogenbondsbetweenthecomplementary
DNAstrandstobreak.Thisprocessiscalleddenaturation.

PCR Process
Step2:Annealing
•PrimersbindtothetargetDNA sequencesand
initiatepolymerization.
•Thiscanonlyoccuroncethetemperatureofthesolutionhasbeen
lowered(55-65°C).Oneprimerbindstoeachstrand.

PCR Process
Step3:Extension
•NewstrandsofDNAaremadeusingtheoriginalstrandsastemplatesat
72°C
•ADNApolymeraseenzymejoinsfreeDNAnucleotidestogether.
•ThisenzymeisoftenTaqpolymerase,anenzymeoriginallyisolatedfrom
athermophilicbacteriacalledThermusaquaticus.
•Theorderinwhichthefreenucleotidesareaddedisdeterminedbythe
sequenceofnucleotidesintheoriginal(template)DNAstrand.
•TheresultofonecycleofPCRistwodouble-strandedsequencesoftarget
DNA,eachcontainingonenewlymadestrandandoneoriginalstrand.

PCR Process
•Thecycleisrepeatedmanytimes(usually20–30)asmostprocesses
usingPCRneedlargequantitiesofDNA.
•Itonlytakes2–3hourstogetabillionorsocopies.

Applications of PCR
Basic Research
•Mutation screening
•Drug discovery
•Classification of organisms
•Genotyping
•Molecular Archaeology
•Molecular Epidemiology
•Bioinformatics
•Genomic cloning
•Site-directed mutagenesis
•Gene expression studies
Applied Research
•Genomic matching
•Detection of pathogens
•Pre –natal diagnosis
•DNA fingerprinting
•Gene therapy

Application of PCR
PCRinhumanmedicine
•PCRtechnologyhasbecomeanessentialresearchanddiagnostic
toolforimprovinghumanhealthandqualityoflife.
•Itallowsthedetectionofinfectiousorganismsjustfromonecellby
amplifyingspecificregionofthegeneticmaterial.
•SomeimportantareasinmedicalresearchwherePCRtechnologyis
employedincludethefollowing

Application of PCR
PCRininfectiousdisease
•PCRtechnologyhasbecomethebasisforabroadspectrumofclinical
diagnostictestsforvariousinfectiousagents,includingvirusesandbacteria
•Besidesdetectingthepresenceofpathogens,PCRallowsustoquantifythe
amountofpathogenspresentinpatient’sbloodandthishelpstomonitorthe
progressionofinfectionorresponsetodrugtreatment.
•PCRhasenabledthedevelopmentofdiagnostictestsformanydiseases
suchas,HIV-1,HepatitisBandCviruses,HumanPapillomavirus,
Chlamydiatrachomatis,Neisseriagonorrhoeae,Cytomegalovirus,
Mycobacteriumtuberculosis.

Application of PCR
PCRandgenetictesting:
•PCRtechnologyhasrecentlybecomeapowerfultooltodetect
diseaseassociatedgenetopredictthepresenceofheartdiseaseand
cancers.
•Knowledgeofdiseaseassociatedgeneinthepersonpredisposedto
thesedisordershaveachancetocontroltheproblemmuchin
advance.
.

Application of PCR
PCRinplantscience:
•TherearevariousfieldsinplantsciencewhichrequirestheuseofPCR
technologyforitsaccomplishment
Plantspeciesidentification:
•PCRtechniquehasalsobeenemployedinidentificationofplantspeciesusing
speciesandgroup-specificprimerstargetingchloroplastDNA.
•Theseassaysallowedidentificationofplantsbasedonsize-specificamplicons.
plantsbelongingtothesamefamilyhascloseprimer-bindingsitesandhence
sameampliconssizewhileplantsbelongingtodifferentspeciesandgroups
havedifferentprimer-bindingsitesandhencewillresultindifferentamplicons
size.

Application of PCR
PCRintissueculture:
•ItisusedinanalysisofDNAandspecificgenesinplantcellsat
differentstagesofre-generationduringinvitroculturealongwith
RAPD(randomamplificationofpolymorphicDNA)technology.
•Thelevelofpolymorphisminregeneratedplantscouldberevealed
bythesedualtechniques.

Application of PCR
PCRinveterinaryparasitology:
•Owingtoitsrapidityandsensitivityascomparedtoantibody-baseddiagnosis,PCRmet
itsusesinalmostallaspectsofbiologicalworkincludingveterinaryclinicaldiagnosis.
•SomeexamplesofPCRapplicationsinveterinaryparasitology:
Aujeszky’sdisease(pseudorabis)virusofpigs:
•Thisviruscausesabortionandmortalityinpiglets.
•Thisdiseasehasalatentperiodwherethereisnosymptomofinfectionmakingit
difficulttoeradicatethediseasecompletely.
•Forthisreason,PCRisconsideredtobeappropriatetoolfordetectinglatentcasesof
Aujeszky‟sdisease.

Application of PCR
Bovineleukemiavirus(BLV):
•Thisviruscausesenzooticbovineleukosis.PCRassayfordetectionofBLVwas
developedin1991.
Bovineviraldiarrhoeavirus(BVDV):
•Thisvirusisnotonlyfataltocattlebutalsocausescontaminationincalfserumusedin
cellcultureworkthusleadingtocontaminationofvaccinesandpharmaceuticalproducts.
•Besidestheaboveexamples,PCRhasbeenusedinroutinediagnosisofveterinaryvirus
suchasPorcineparvo,Bovinepapillomatype1and2,Avianpolyoma,Chickenanemia,
Duckhepatitis,Africanswinefever,Channelcatfish,Equineherpestype1and4,Feline
herpes,Alcelaphineherpestype1etc.

Application of PCR
PCRinForensicapplications:
•ThemostcommonuseofPCRinforensicapplications
includes:
Criminalinvestigation:
•Asampleofblood,hairrootortissueleftinthecrime
scenecanbeusedtoidentifyapersonusingPCRby
comparingtheDNAofthecrimescenewiththatof
suspectorwithDNAdatabaseofearlierconvicts.
•Evidencefromdecades-oldcrimescanbetested,
confirmingordefendingthepeopleoriginally
convicted.

Application of PCR
Parentaltesting:
•PCRtechnologyisalsousedinfindingthebiological
parentsofadoptedorkidnappedchildwheretheDNAof
achildismatchedwithcloserelatives
•Theactualbiologicalfatherofanewborncanalsobe
ruledout.
•Inparentaltesting,shorttandemrepeats(STR)areused
asmarkerswhereeachperson’sDNAcopiescontaintwo
copiesofthesemarkersoneeachfromfatherandmother.
•Thesemarkersdifferinlengthandsometimessequence.

Application of PCR
PCRinresearchapplications:
•Biologicalresearchrequiresmolecularbiologytechniquesasitsstarting
materialandsoforthwhichcannotbeaccomplishedwithouttheuseofPCR.
DNAcloning:
•PCRhelpstoamplifyspecificDNAfromagenomeandtheamplifiedDNAcan
beinsertedintoavectorfortransformationandexpression.
•TheseinsertscanfurtherbeconfirmedbyPCRmethod.
DNAsequencing:
•PCRassiststhetaskofDNAsequencingfrompatientswithgeneticdisease
mutation.

Application of PCR
Sequence-taggedsites:
•ThisisaprocesswherePCRisusedasanindicatorifaparticularsegment
ofageneorgenomeispresentinaparticularclone.
•Thisapplicationisvitalinmappingthecosmidclonestobesequencedby
theHumanGenomeProject.
Phylogenyanalysis:
•Thephylogenyoforganismslikeplants,animalsandotherlowerorganisms
canbetracedoutbyDNAanalysis.
•Theoriginofunknownsamplesliketherecoveredbonesofearlymencan
alsoberulesout.

Reverse Transcription PCR (RT-
PCR
•ReversetranscriptionPCR(RT-PCR)usesmRNAratherthanDNAasthestarting
template.
•First,theenzymereversetranscriptaseusesthemRNAtemplatetoproducea
complementarysingle-strandedDNAstrandcalledcDNAinaprocessknownasreverse
transcription.
•Next,DNApolymeraseisusedtoconvertthesingle-strandedcDNAintodouble-
strandedDNA.
•TheseDNAmoleculescannowbeusedastemplatesforaPCRreactionasdescribed
above.
•ThevalueofRT-PCRisthatitcanbeusedtodetermineifanmRNAspeciesispresent
inasampleortocloneacDNAsequenceforasubsequentexperiment.
Guide to Research Techniques in Neuroscience. http://dx.doi.org/10.1016/B978-0-12-800511-8.00010-1

Reverse Transcription PCR (RT-
PCR
RT-PCRhasrisentobecomethebenchmarktechnologyforthedetection
and/orcomparisonofRNAlevelsforseveralreasons:
•itdoesnotrequirepostPCRprocessing,
•awiderange(>10
7
-fold)ofRNAabundancecanbemeasured,and
•itprovidesinsightintobothqualitativeandquantitativedata.
Duetoitssimplicity,specificityandsensitivity,RT-PCRisusedinawide
rangeofapplicationsfromexperimentsassimpleasquantificationofyeast
cellsinwinetomorecomplexusesasdiagnostictoolsfordetectinginfectious
agentssuchastheavianfluvirusandSARS-CoV-2.
Guide to Research Techniques in Neuroscience. http://dx.doi.org/10.1016/B978-0-12-800511-8.00010-1

Reverse Transcription PCR (RT-
PCR) Principle
•InRT-PCR,theRNAtemplateisfirstconvertedinto
acomplementaryDNA(cDNA)usingareversetranscriptase(RT).
•ThecDNAisthenusedasatemplateforexponentialamplification
usingPCR.
•TheuseofRT-PCRforthedetectionofRNAtranscripthas
revolutionizedthestudyofgeneexpressioninthefollowing
importantways:
–Madeittheoreticallypossibletodetectthetranscriptsofpracticallyany
gene
[
–Enabledsampleamplificationandeliminatedtheneedforabundantstarting
materialrequiredwhenusingnorthernblotanalysis
–ProvidedtoleranceforRNAdegradationaslongastheRNAspanningthe
primerisintact
Guide to Research Techniques in Neuroscience. http://dx.doi.org/10.1016/B978-0-12-800511-8.00010-1

Principles
One-stepRT-PCRvstwo-stepRT-PCR
•ThequantificationofmRNAusingRT-PCRcanbeachievedaseitheraone-steporatwo-stepreaction.
•Thedifferencebetweenthetwoapproachesliesinthenumberoftubesusedwhenperformingthe
procedure.
•Thetwo-stepreactionrequiresthatthereversetranscriptasereactionandPCRamplificationbe
performedinseparatetubes.
•Thedisadvantageofthetwo-stepapproachissusceptibilitytocontaminationduetomorefrequent
samplehandling.
•Ontheotherhand,theentirereactionfromcDNAsynthesistoPCRamplificationoccursinasingle
tubeintheone-stepapproach.
•Theone-stepapproachisthoughttominimizeexperimentalvariationbycontainingallofthe
enzymaticreactionsinasingleenvironment.IteliminatesthestepsofpipettingcDNAproduct,whichis
labor-intensiveandpronetocontamination,toPCRreaction.

Principles
•Thefurtheruseofinhibitor-tolerantpolymerases,polymeraseenhancerswithanoptimizedone-step
RT-PCRcondition,supportsthereversetranscriptionoftheRNAfromunpurifiedorcrudesamples,
suchaswholebloodandserum.
•However,thestartingRNAtemplatesarepronetodegradationintheone-stepapproach,andtheuse
ofthisapproachisnotrecommendedwhenrepeatedassaysfromthesamesampleisrequired.
•Additionally,theone-stepapproachisreportedtobelessaccuratecomparedtothetwo-step
approach.
•ItisalsothepreferredmethodofanalysiswhenusingDNAbindingdyessuchasSYBRGreen
sincetheeliminationofprimer-dimerscanbeachievedthroughasimplechangeinthemelting
temperature
•Nevertheless,theone-stepapproachisarelativelyconvenientsolutionfortherapiddetection
oftargetRNAdirectlyinbiosensing.

Principles
End-pointRT-PCRvsreal-timeRT-PCR
•QuantificationofRT-PCRproductscanlargelybedividedintotwocategories:
–end-point
–real-time
•Theuseofend-pointRT-PCRispreferredformeasuringgeneexpression
changesinsmallnumberofsamples
•Thereal-timeRT-PCRhasbecomethegoldstandardmethodforvalidating
quantitativeresultsobtainedfromarrayanalysesorgeneexpressionchangeson
aglobalscale.

Principles
End-pointRT-PCR
•Themeasurementapproachesofend-pointRT-PCRrequiresthedetection
ofgeneexpressionlevelsbytheuseoffluorescentdyeslikeethidium
bromide,P32labelingofPCRproductsusingphosphorimageror
byscintillationcounting.
•End-pointRT-PCRiscommonlyachievedusingthreedifferentmethods:
relative,
competitive
comparative

Application
•Theexponentialamplificationviareversetranscriptionpolymerasechain
reactionprovidesforahighlysensitivetechniqueinwhichaverylowcopy
numberofRNAmoleculescanbedetected.
•RT-PCRiswidelyusedinthediagnosisofgeneticdiseasesand,
semiquantitatively,inthedeterminationoftheabundanceofspecific
differentRNAmoleculeswithinacellortissueasameasureofgene
expression

Application
Researchmethods
•RT-PCRiscommonlyusedinresearchmethodstomeasuregeneexpression.
•Forexample,Linetal.usedqRT-PCRtomeasureexpressionofGalgenesinyeastcells.
•First,Linetal.engineeredamutationofaproteinsuspectedtoparticipateinthe
regulationofGalgenes.
•ThismutationwashypothesizedtoselectivelyabolishGalexpression.Toconfirmthis,
geneexpressionlevelsofyeastcellscontainingthismutationwereanalyzedusingqRT-
PCR.
•Theresearcherswereabletoconclusivelydeterminethatthemutationofthisregulatory
proteinreducedGalexpression.
•NorthernblotnalysisisusedtostudytheRNA'sgeneexpressionfurther.

Application
Geneinsertion
•RT-PCRcanalsobeveryusefulintheinsertionofeukaryoticgenes
intoprokaryotes.
•Becausemosteukaryoticgenescontainintrons,whicharepresentinthe
genomebutnotinthematuremRNA,thecDNAgeneratedfromaRT-PCR
reactionistheexact(withoutregardtotheerror-pronenatureofreverse
transcriptases)DNAsequencethatwouldbedirectlytranslated
intoproteinaftertranscription.
•Whenthesegenesareexpressedinprokaryoticcellsforthesakeof
proteinproductionorpurification,theRNAproduceddirectlyfrom
transcriptionneednotundergosplicingasthetranscriptcontains
onlyexons.
•(Prokaryotes,suchasE.coli,lackthemRNAsplicingmechanismof
eukaryotes).

Application
Geneticdiseasediagnosis
•RT-PCRcanbeusedtodiagnosegeneticdiseasesuchasLesch–Nyhansyndrome.
•ThisgeneticdiseaseiscausedbyamalfunctionintheHPRT1gene,whichclinically
leadstothefataluricacidurinarystoneandsymptomssimilartogout.
•AnalyzingapregnantmotherandafetusformRNAexpressionlevelsofHPRT1will
revealifthemotherisacarrierandifthefetuswilllikelytodevelopLesch–Nyhan
syndrome.
Cancerdetection
•ScientistsareworkingonwaystouseRT-PCRincancerdetectiontohelp
improveprognosis,andmonitorresponsetotherapy.Circulatingtumorcellsproduce
uniquemRNAtranscriptsdependingonthetypeofcancer.Thegoalistodetermine
whichmRNAtranscriptsserveasthebestbiomarkersforaparticularcancercelltype
andthenanalyzeitsexpressionlevelswithRT-PCR.
[43]
•RT-PCRiscommonlyusedinstudyingthegenomesofviruseswhosegenomesare
composedofRNA,suchasInfluenzavirusA,retroviruseslikeHIVandSARS-CoV-2.
[44]
•Challe
Tags