Recurring decimals

LiveOnlineClassesInd 870 views 85 slides May 15, 2021
Slide 1
Slide 1 of 85
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85

About This Presentation

Recurring decimals


Slide Content

How to start… Write the following in full to 9 decimal places… a) 0.6 b) 0.53 c) 0.72 d) 0.479 e) 0.328 ● ● ● ● ● ● ● ●

How to start… Write the following in full to 9 decimal places… a) 0.6 b) 0.53 c) 0.72 d) 0.479 e) 0.328 ● ● ● ● ● ● ● ● → 0.666666667 → 0.533333333 → 0.727272727 → 0.479479479 → 0.328282828

Learning Objective How do we convert recurring decimals to fractions?

Learning Outcomes To convert fractions to decimals To convert a recurring decimal to a fraction

Fraction to decimal How do we change a fraction to a decimal?

Fraction to decimal We divide the numerator by the denominator.

Fraction to decimal e.g.   8 1

Fraction to decimal e.g.   8 1. 0 0 0 0.1 2 5

Fraction to decimal Sometimes the decimal will be a recurring decimal 3 1. 0 0 0 e.g.  

Fraction to decimal Sometimes the decimal will be a recurring decimal 3 1. 0 0 0 0.3 3 3 e.g.   Because the same division is repeating over and over we can say it is recurring. The digits which recur are marked with a dot above them.

Fraction to decimal Sometimes the decimal will be a recurring decimal 3 1. 0 0 0 0.3 3 3 e.g.   Because the same division is repeating over and over we can say it is recurring. The digits which recur are marked with a dot above them.  

Fraction to decimal

Fraction to decimal 11 3. 0 0 0 0 0.2 7 2 7

Fraction to decimal 11 3. 0 0 0 0 0.2 7 2 7  

Fraction to decimal Change into a decimal.  

Fraction to decimal 6 5. 0 0 0 0 0. 8 3 3 3   Change into a decimal.   Notice only the 3 has a dot over it as only the 3 recurs.

Fraction to decimal Change these fractions into decimals.  

Fraction to decimal Change these fractions into decimals.    

Fraction to decimal Change these fractions into decimals.      

Fraction to decimal Change these fractions into decimals.        

Learning Outcomes To convert fractions to decimals To convert a recurring decimal to a fraction

Learning Outcomes To convert fractions to decimals To convert a recurring decimal to a fraction

The algebra of recurring decimals What is a recurring decimal?

The algebra of recurring decimals A decimal where the digit(s) repeat.

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals

The algebra of recurring decimals Check this on a calculator by dividing 4 by 9.

Let’s change 0.7 into a fraction The algebra of recurring decimals

Let x= 0.7 so . . Let’s change 0.7 into a fraction The algebra of recurring decimals

Let x= 0.7 so 10x = 7.7 . . Let’s change 0.7 into a fraction Multiply! The algebra of recurring decimals

Let x= 0.7 so 10x = 7.7 . . 10x= 7.7777777777777777... x= 0.7777777777777777... Let’s change 0.7 into a fraction Multiply! Subtract! The algebra of recurring decimals

Let x= 0.7 so 10x = 7.7 . . 10x= 7.7777777777777777... x= 0.7777777777777777... 9x= 7 Let’s change 0.7 into a fraction Multiply! Subtract! The algebra of recurring decimals

Let x= 0.7 so 10x = 7.7 . . 10x= 7.7777777777777777... x= 0.7777777777777777... 9x= x= 7 9 Let’s change 0.7 into a fraction Multiply! Subtract! Divide! The algebra of recurring decimals 7

Change 0.47 into a fraction . . The algebra of recurring decimals

Change 0.47 into a fraction . . Let x= 0.47 . . The algebra of recurring decimals

Change 0.47 into a fraction . . Let x= 0.47 . . Multiply! The algebra of recurring decimals With what this time?

Change 0.47 into a fraction . . Let x= 0.47 . . Multiply! The algebra of recurring decimals With 100

Change 0.47 into a fraction . . Let x= 0.47 . . so 100x = 47.47 . . Multiply! The algebra of recurring decimals

Change 0.47 into a fraction . . Let x= 0.47 100x= 47.4747474747474747... x= 0.4747474747474747... . . so 100x = 47.47 . . Multiply! Subtract! The algebra of recurring decimals

Change 0.47 into a fraction . . Let x= 0.47 100x= 47.4747474747474747... x= 0.4747474747474747... . . so 100x = 47.47 . . Multiply! Subtract! The algebra of recurring decimals

Change 0.47 into a fraction . . Let x= 0.47 100x= 47.4747474747474747... x= 0.4747474747474747... 99x= 47 . . so 100x = 47.47 . . Multiply! Subtract! Divide! The algebra of recurring decimals

Change 0.47 into a fraction . . Let x= 0.47 100x= 47.4747474747474747... x= 0.4747474747474747... 99x= x= 47 99 . . so 100x = 47.47 . . Multiply! Subtract! Divide! The algebra of recurring decimals 47

Steps: 1. Write the recurring decimal out to nine decimal places 2. Multiply the decimal by powers of 10 until the part of the decimal that repeats is in full at the front 3. Write the amount that you multiplied by ‘ ’ = the result from above   4. Write ‘ the original decimal   5. Subtract the two 6. Divide to get   The algebra of recurring decimals

Recurring Decimals

Change 0.39 into a fraction . . Let x= 0.39 100x= 39.3939393939393939... x= 0.3939393939393939... 99x= x= 39 99 . . so 100x = 39.39 . . Multiply! Subtract! Divide! 39 Recurring Decimals

Change 0.39 into a fraction . . Let x= 0.39 100x= 39.3939393939393939... x= 0.3939393939393939... 99x= x= 39 99 . . so 100x = 39.39 . . Multiply! Subtract! Divide! 39 = 13 as required 33 Recurring Decimals

Challenge 0.45 .

Challenge 0.45 . Let x= 0.45 .

Challenge 0.45 . Let x= 0.45 . so 100x = 45.5 .

100x= 45.555555555555555… x= 0.455555555555555… Challenge 0.45 . Let x= 0.45 . so 100x = 45.5 .

100x= 45.555555555555555… x= 0.455555555555555… Challenge 0.45 . Let x= 0.45 . so 100x = 45.5 .

100x= 45.555555555555555… x= 0.455555555555555… Challenge 0.45 . Let x= 0.45 . so 100x = 45.5 .

100x= 45.555555555555555… x= 0.455555555555555… Challenge 0.45 . Let x= 0.45 . 99x= 45.1 so 100x = 45.5 .

100x= 45.555555555555555… x= 0.455555555555555… Challenge 0.45 . Let x= 0.45 . 99x= 45.1 990x= 451 so 100x = 45.5 .

100x= 45.555555555555555… x= 0.455555555555555… Challenge 0.45 . Let x= 0.45 . 99x= 45.1 990x= 451 x= 451 990 = 41 90 so 100x = 45.5 .

Change 0.213 into a fraction . . Recurring Decimals

Change 0.213 into a fraction . . Let x= 0.213 . . so 1000x = 213.213 . . Recurring Decimals

Change 0.213 into a fraction . . Let x= 0.213 . . so 1000x = 213.213 . . Multiply! Recurring Decimals

Change 0.213 into a fraction . . Let x= 0.213 1000x= 213.213213213213213... x= 0.213213213213213... . . so 1000x = 213.213 . . Multiply! Recurring Decimals

Change 0.213 into a fraction . . Let x= 0.213 1000x= 213.213213213213213... x= 0.213213213213213... . . so 1000x = 213.213 . . Multiply! Subtract! Recurring Decimals

Change 0.213 into a fraction . . Let x= 0.213 1000x= 213.213213213213213... x= 0.213213213213213... . . so 1000x = 213.213 . . Multiply! Subtract! Recurring Decimals

Change 0.213 into a fraction . . Let x= 0.213 1000x= 213.213213213213213... x= 0.213213213213213... 999x= . . so 1000x = 213.213 . . Multiply! Subtract! 213 Recurring Decimals

Change 0.213 into a fraction . . Let x= 0.213 1000x= 213.213213213213213... x= 0.213213213213213... 999x= . . so 1000x = 213.213 . . Multiply! Subtract! Divide! 213 Recurring Decimals

Change 0.213 into a fraction . . Let x= 0.213 1000x= 213.213213213213213... x= 0.213213213213213... 999x= x= 213 999 . . so 1000x = 213.213 . . Multiply! Subtract! Divide! 213 Recurring Decimals

Change these recurring decimals into fractions. Recurring Decimals   (This is different from the previous example.) (= 0.235235235….)

Change these recurring decimals into fractions. Recurring Decimals    

Change these recurring decimals into fractions. Recurring Decimals      

Change these recurring decimals into fractions. Recurring Decimals        

Change these recurring decimals into fractions. Recurring Decimals          

Learning Outcomes To convert fractions to decimals and vice versa To convert a recurring decimal to a fraction

Learning Outcomes To convert fractions to decimals and vice versa To convert a recurring decimal to a fraction

Extension Convert the recurring decimal to a mixed number. Give your answer in its simplest form.  

Extension Convert the recurring decimal to a mixed number. Give your answer in its simplest form.   x= 1000x=2136.363636… 1000x=2136.36363636… 10x= 21.36363636… 990x= 2115 x=  

Extension Convert the recurring decimal to a mixed number. Give your answer in its simplest form.  

Extension Convert the recurring decimal to a mixed number. Give your answer in its simplest form.   x= 100x=206.66666666… 100x=206.66666666… 10x= 20.66666666… 90x=186 x=  

Learning Objective How do we convert recurring decimals to fractions?