Renal elimination.pdf fffffffffffffffffffff

RehanRustam2 70 views 61 slides Jun 01, 2024
Slide 1
Slide 1 of 61
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61

About This Presentation

fff


Slide Content

Drug Elimination and
Renal Clearance

LEARNING OUTCOMES
•Describe the main routes of drug elimination from the body
•Understand the importance of the role of clearance as a PK parameter.
•Define clearance and its relationship to a corresponding half-life and a volume of distribution.
•Differentiate between clearance and renal clearance.
•Describe the processes for renal drug excretion and explain which renal excretion process predominates in the
kidney for a specific drug, given its renal clearance.
•Understand anatomy of kidney
•Define renal Plasma Flow, to understand its formula and its normal value
•Describe the renal clearance model based on renal blood flow, glomerular filtration, secretion and drug
reabsorption.
•Derive equation for fraction of Ionized drug (For weakly acidic and basic drugs)
•Understand U/P ratio for weakly acidic and basic drug
•Understand the effect of urine pH on drug reabsorption
•Interpret factors affecting renal excretion
•Describe organ drug clearance in terms of blood flow and extraction.
•Calculate clearance using different methods including the physiological, noncompartmental, and
compartmental approaches
•Solve numericals of chapter renal excretion of drugs

Drug Elimination
•Drugeliminationreferstotheirreversibleremovalofdrug
fromthebodybyallroutesofelimination.
•Drugeliminationisusuallydividedintotwomajor
components:excretionandbiotransformation.

Drug Elimination
•Drugexcretionistheremovaloftheintactdrug.
•Nonvolatiledrugsareexcretedmainlybyrenalexcretion
•Otherpathwaysfordrugexcretionmayincludetheexcretion
ofdrugintobile,sweat,saliva,milk(vialactation),orother
bodyfluids.
•Volatiledrugs,suchasgaseousanestheticsordrugswithhigh
volatility,areexcretedviathelungsintoexpiredair.

Drug Elimination
•Biotransformationordrugmetabolismistheprocessbywhich
thedrugischemicallyconvertedinthebodytoametabolite.
•Biotransformationisusuallyanenzymaticprocessandthe
enzymesarelocatedintheliver.
•Afewdrugsmayalsobechangedchemicallybyanon-enzymatic
process(eg,esterhydrolysis).

Drug Elimination
•Clearancemaybedefinedasthevolumeoffluidclearedof
drugfromthebodyperunitoftime.
•Theunitsforclearancearemillilitersperminute(mL/min)or
litersperhour(L/hr).
•Inaddition,forfirst–ordereliminationprocesses,clearanceisa
constant,whereasdrugeliminationrateisnotconstant.

The Kidney
•Theliverandkidneyarethetwomajordrugeliminationorgans
inthebody.

The Kidney
•Functionsofthekidney:
1.Removalofmetabolicwasteproducts
2.Maintainsaltandwaterbalance
3.Secretionofrenin,whichregulates
bloodpressure
4.Secretionoferythropoietin,which
stimulatesredbloodcellproduction.

Anatomy of Kidney
•Thekidneysarelocatedinthe
peritonealcavity.
•Theouterzoneofthekidneyis
calledthecortex,andtheinner
regioniscalledthemedulla.
•Thenephronsarethebasic
functionalunits,collectively
responsiblefortheremovalof
metabolicwasteandthe
maintenanceofwaterand
electrolytebalance.

Anatomy of Kidney
•Eachkidneycontains1to1.5millionnephrons.
•Theglomerulusofeachnephronstartsinthecortex.
•CorticalnephronshaveshortloopsofHenlethatremain
exclusivelyinthecortex;juxtamedullarynephronshavelong
loopsofHenlethatextendintothemedulla.
•ThelongerloopsofHenleallowforagreaterabilityofthe
nephrontoreabsorbwater,therebyproducingamore
concentratedurine.

Anatomy of Kidney

Anatomy of Kidney

Blood Supply
•Therenalbloodflow(RBF)isthevolumeofbloodflowing
throughtherenalvasculatureperunittime.
•Renalbloodflowexceeds1.2L/minor1700L/day.
•Renalplasmaflow(RPF)istherenalbloodflowminusthe
volumeofredbloodcellspresent.
•Renalplasmaflowisanimportantfactorintherateofdrug
filtrationattheglomerulus.

Blood Supply
RPF = RBF –(RBF X Hct)
where Hct is hematocrit.
•Hctisthefractionofbloodcellsintheblood,about45%ofthetotal
bloodvolume,or0.45.
•Therelationshipofrenalbloodflowtorenalplasmaflowisgivenbya
rearrangementof
RPF = RBF (1-Hct)
Assumingahematocritof0.45andaRBFof1.2L/min,usingtheabove
equation,
RPF=1.2–(1.2x0.45)=0.66L/minor660mL/min,approximately950
L/day.

Blood Supply
•Theglomerularfiltrationrate(GFR)isabout125mL/mininan
averageadult,orabout20%oftheRPF.
•TheratioGFR/RPFisthefiltrationfraction.

Glomerular Filtration and Urine
Formation
•AnormaladultmalesubjecthasaGFRofapproximately125
mL/min.
•About180Loffluidperdayarefilteredthroughthekidneys.
•Inspiteofthislargefiltrationvolume,theaverageurinevolumeis
1–1.5L.
•Upto99%ofthefluidvolumefilteredattheglomerulusis
reabsorbed.Besidesfluidregulation,thekidneyalsoregulatesthe
retentionorexcretionofvarioussolutesandelectrolytes.
•Withtheexceptionofproteinsandprotein-boundsubstances,
mostsmallmoleculesarefilteredthroughtheglomerulusfromthe
plasma.

Renal Excretion of drugs
⚫The most important organ for drug excretion is the kidney.
The principal processes that determine the
urinary excretion of drugs are:
–Glomerular filtration.
–Active tubular secretion.
–Passive or active tubular re-absorption.

⚫Driving force for GF is hydrostatic pressure of blood
flowing in capillaries.
⚫Hydrostatic pressure pushes a portion of blood to be
filtered across a semi-permeable membrane into the
Bowman’s Capsule.
⚫Most drugs are filtered through glomerulus.
⚫Blood cells, platelets, and plasma proteins are retained in
the blood and not filtered.
Glomerular filtration (GF)

Active Tubular Secretion of drugs
•occurs mainly in proximal tubules
•It increases drug concentration in filtrate
•Drugs undergo active secretion have
excretion rate values greater than normal
GFR
•Secretion of K
+
, H
+
, ammonia; excess
amino acids
•Secretion of ionized drugs into the lumen
e.g. penicillin

Characters of active tubular secretion:
•Is an active process
•needs energy
•requires carriers (transporters)
•can transport drugs against concentration
gradients
•Saturable
•Not specific (competition may happens)

Two secretion mechanisms are identified
System for secretion of organic
acids/anions
⮚Penicillin, salicylates, sulfonamides
⮚Probenecid, uric acid
Systemfororganicbases/cations
⮚Atropine, morphine
⮚Catecholamines, quinine,
neostigmine

Tubular re-absorption
•After glomerular filtration, drugs may be
reabsorbed from tubular lumen into
systemic circulation.
•It takes place all along the renal tubules.
•Drugs undergo tubular re-absorption have
excretion rates less than the GFR. e.g.
Glucose
•Re-absorption increases half life of a drug.
•Re-absorption may be active or passive.

Active tubular re-
absorption
•It occurs with endogenous
substances or nutrients that
the body needs to conserve.
e.g. glucose, electrolytes,
amino acids, uric acid,
vitamins.
•Probenecidacts as a
uricosuric agentin treatment
of gout.
•It increases excretion of uric
acid in urine by inhibiting
active tubular re-absorption
of the endogenous metabolite
uric acid.

Passive Tubular re-absorption and urinary pH trapping
(Ion trapping)
•Most drugs are weak acids or weak bases thus by
changing pH of urine via chemicals can inhibit the
passive tubular re-absorption of drugs.
•Urine is normally slightly acidic and favors
excretion of basic drugs.

Renal Drug Excretion
For a weak acid drug, the Henderson–Hasselbalch equation is given as

Renal Drug Excretion
•ForacidicdrugswithpK
avaluesfrom3to8,achangein
urinarypHaffectstheextentofdissociation.
•Theextentofdissociationismoregreatlyaffectedbychanges
inurinarypHfordrugswithapK
aof5thanwithapK
aof3.
•WeakacidswithpK
avaluesoflessthan2arehighlyionizedat
allurinarypHvaluesandareonlyslightlyaffectedbypH
variations.

Renal Drug Excretion
•ThegreatesteffectofurinarypHonreabsorptionoccurswith
weakbasedrugswithpK
avaluesof7.5–10.5.
•FromtheHenderson–Hesselbalchrelationship,aconcentration
ratioforthedistributionofaweakacidorbasicdrugbetween
urineandplasmamaybederived.
•Theurine–plasma(U/P)ratiosforthesedrugsareasfollows.

Renal Drug Excretion

Renal Drug Excretion
•Forexample,amphetamine,aweakbase,willbereabsorbedifthe
urinepHismadealkalineandmorelipid-solublenonionizedspecies
areformed.
•Incontrast,acidificationoftheurinewillcausetheamphetamineto
becomemoreionized(formasalt).
•Thesaltformismorewatersolubleandlesslikelytobereabsorbedand
hasatendencytobeexcretedintotheurinemorequickly.
•Inthecaseofweakacids(suchassalicylicacid),acidificationofthe
urinecausesgreaterreabsorptionofthedrugandalkalinizationofthe
urinecausesmorerapidexcretionofthedrug.

•Bothsulfisoxazole(Gantrisin)tabletsandthecombinationproduct,
sulfamethoxazole/trimethoprim(Bactrim)tablets,areusedforurinary
tractinfections.
•Sulfisoxazoleandsulfamethoxazolearesulfonamidesthatarewell
absorbedafteroraladministrationandareexcretedinhighconcentrations
intheurine.
•SulfonamidesareN-acetylatedtoalesswater-solublemetabolite.Both
sulfonamidesandtheircorrespondingN-acetylatedmetaboliteareless
watersolubleinacidandmoresolubleinalkalineconditions.
•Inacidurine,renaltoxicitycanoccurduetoprecipitationofthe
sulfonamidesintherenaltubules.
•Topreventcrystalluriaandrenalcomplications,patientsareinstructedto
takethesedrugswithahighamountoffluidintakeandtokeeptheurine
alkaline.

Let pKa = 5 for an acidic drug. Compare the U/P at
urinary pH (a) 3, (b) 5, and (c) 7.

•InadditiontothepHoftheurine,therateofurineflowinfluences
theamountoffiltereddrugthatisreabsorbed.
•Thenormalflowofurineisapproximately1-2mL/min.
•Nonpolarandnonionizeddrugs,whicharenormallywell
reabsorbedintherenaltubules,aresensitivetochangesintherate
ofurineflow.
•Drugsthatincreaseurineflow,suchasethanol,largefluidintake,
andmethylxanthines(suchascaffeineortheophylline),decrease
thetimefordrugreabsorptionandpromotetheirexcretion.
•Thus,forceddiuresisthroughtheuseofdiureticsmaybeauseful
adjunctforremovingexcessivedruginanintoxicatedpatient,by
increasingrenaldrugexcretion.

Factors affecting renal excretion of drug
⮚Physiochemical properties of drugs
•Molecular weight
•Lipid solubility
•Volume of distribution
•Binding character
•Degree of ionization
⮚Blood flow to the kidney
⮚Urine pH
⮚Biological factor e.g. age
⮚Disease states

Factors affecting renal excretion
Drug MW (Molecular Weight):larger MW drugs are difficult to be
excreted than smaller MW especially by glomerular filtration.
Drug lipid solubility:urinary excretion is inversely related to lipophilicity,
increased lipid solubility increase volume of distribution of drug and
decrease renal excretion.
Volume of distribution: Renalclearance is inversely related to volume of
distribution of drugs (Vd). A drug with large Vd is poorly excreted in urine.

Factors affecting renal excretion
Renalbloodflow:increasedperfusionleadstoincreasedexcretion;
Importantfordrugsexcretedbyglomerularfiltration.
Binding characteristics of the drugs
Drugsthatareboundtoplasmaproteinsbehaveasmacromoleculesand
cannotbefilteredthroughglomerulus.Onlyunboundorfreedrugappear
inglomerularfiltrate.Proteinbounddrughaslonghalflives.

Factors affecting renal excretion
Biological factor:Age can affect renal clearance. Renal clearance is
reduced in neonates and elderly.
Disease statesimpairs the elimination of drugs e.g. hypertension,
Diabetes, pyelonephritis

Drug Clearance
•Drugclearanceisapharmacokinetictermfordescribingdrug
eliminationfromthebodywithoutidentifyingthemechanismof
theprocess.
•Drugclearance(bodyclearance,totalbodyclearance,orCl
T)
considerstheentirebodyasasingledrug-eliminatingsystemfrom
whichmanyunidentifiedeliminationprocessesmayoccur.
•Drugclearanceisdescribedintermsofvolumeoffluidclearof
drugpertimeunit(eg,mL/min).
•Justastheeliminationrateconstant(k)representsthesumtotal
ofalltherateconstantsfordrugelimination,includingexcretion
andbiotransformation,Cl
Tisthesumtotalofalltheclearance
processesinthebody,includingclearancethroughthekidney
(renalclearance),lung,andliver(hepaticclearance).

Drug Clearance

Clearance Models
•ThecalculationofclearancefromkandV
Dassumes
(sometimesincorrectly)adefinedmodel,whereasclearance
estimateddirectlyfromtheplasmadrugconcentrationtime
curvedoesnotassumeanymodel.

Physiologic/Organ Clearance
•Clearancemaybecalculatedforanyorgan
involvedintheirreversibleremovalofdrugfrom
thebody.
•Manyorgansinthebodyhavethecapacityfor
drugelimination,includingdrugexcretionand
biotransformation.
•Thekidneysandliverarethemostcommon
organsinvolvedinexcretionandmetabolism,
respectively.
•Physiologicpharmacokineticmodelsarebasedon
drugclearancethroughindividualorgansor
tissuegroups

Drugclearancemodel.(Q=bloodflow,C
a=
incomingdrugconcentration[usuallyarterial
drugconcentration],C
v=outgoingdrug
concentration[venousdrugconcentration]).

Physiologic/Organ Clearance
•Foranyorgan,clearancemaybedefinedas
thefractionofbloodvolumecontainingdrug
thatflowsthroughtheorganandiseliminated
ofdrugperunittime.
•Fromthisdefinition,clearanceistheproduct
ofthebloodflow(Q)totheorgan,andthe
extractionratio(ER).
•TheERisthefractionofdrugextractedbythe
organasdrugpassesthrough.

Physiologic/Organ Clearance
•Clearance = Q (ER)
•Ifthedrugconcentrationintheblood(C
a)
enteringtheorganisgreaterthanthedrug
concentrationofblood(C
v)leavingtheorgan,
thensomeofthedrughasbeenextractedbythe
organ.
•TheERisC
a–C
vdividedbytheenteringdrug
concentration(C
a),asshown
ER = C
a-C
v
C
a

Physiologic/Organ Clearance
•ERisaratiowithnounits.ThevalueofERmayrangefrom0
(nodrugremovedbytheorgan)to1(100%ofthedrugis
removedbytheorgan).
•AnERof0.25indicatesthat25%oftheincomingdrug
concentrationisremovedbytheorganasthedrugpasses
through.

Physiologic/Organ Clearance
•Substituting for ER into Equation for clearance we
get
Cl = Q (C
a-C
v)
C
a
•Thephysiologicapproachtoclearanceshowsthat
clearancedependsonthebloodflowrateand
theabilityoftheorgantoeliminatedrug,
whereastheclassicaldefinitionsofclearanceis
thataconstantorstaticfractionofthevolumein
whichthedrugiscontainedisremovedperunit
timebytheorgan.

General approaches to clearance

Drug renal clearance:
▪If renal clearance is impaired, this may increase
t ½ of drugs and toxic levels of drugs may remain in the
body.
▪Renal clearance is especially important for some drugs
which are:
▪Mainly excreted by the kidney
▪Have narrow therapeutic index (e.g. lithium, digoxin,
warfarin).

Diseases that can decrease renal clearance
–Reduced renal blood flow
•Congestive heart failure.
•Hemorrhage
•Cardiogenic shock
–Decreased renal excretion :
•Renal disease (e.g. glomerulonephritis).
This may increase half-life (t ½ ) of drugs

So what should we do in renal impairment?
•Dose reduction of drugs is required (when
creatinine clearance is below 60 ml/min).
–keep the usual dose but prolong the dosing
intervals (e.g. gentamicin)
–decrease the dose without changing dosing
intervals (e.g. digoxin)
•Monitor blood levels of drugs (therapeutic drug
monitoring).

Dose reduction in renal impairment
Antibiotics:
–Penicillins, cephalosporins
–Aminoglycosides (gentamycin)
–Sulfonamides
❑Non steroidal anti-inflammatory drugs
(NSAIDs)
❑Lithium
❑Digoxin
❑Immunosuppressants(cyclosporine)
❑Anticancer drugs(cisplatin -cyclophosphamide)
These drugs are contraindicated in:
Renal failure –Elderly patients

When dose reduction is not required in renal
impairment ?
⮚Few drugs e.g. ceftriaxone, minocycline that are
excreted into feces (biliary excretion) doesn’t
need dose adjustment in renal impairment.

Comparison of Drug Excretion
Methods

Comparison of Drug Excretion Methods
•Theactualrenalclearanceofadrugisnot
generallyobtainedbydirectmeasurement.
•Theclearancevalueforthedrugisoften
comparedtothatofastandardreference,such
asinulin,whichisclearedcompletelythroughthe
kidneybyglomerularfiltrationonly.
•Clearanceratio,whichistheratioofdrug
clearancetoinulinclearance,maygivean
indicationforthemechanismofrenalexcretion
ofthedrug.

ComparisonofClearanceofaSample
DrugtoClearanceofaReferenceDrug,
Inulin

References
•AppliedBiopharmaceuticsandPharmacokinetics–Leon
Shargel,SussanaWu-Pong,AndrewB.C.Yu,6
th
Edition,Mc
GrawHillInc.
Chapter -6 Page -107 to 127