SlidePub
Home
Categories
Login
Register
Home
General
respiratory system grade 5 science and health
respiratory system grade 5 science and health
CristineAbaigar1
45 views
69 slides
Oct 14, 2024
Slide
1
of 69
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
About This Presentation
this is for grade 5 teachers who wish to use power point that talks about respiratory system
Size:
920.45 KB
Language:
en
Added:
Oct 14, 2024
Slides:
69 pages
Slide Content
Slide 1
Essentials of Human Anatomy & Physiology
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Seventh Edition
Elaine N. Marieb
Chapter 13
The Respiratory System
Slide 2
Function of the Respiratory SystemFunction of the Respiratory System
Slide 13.2Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Oversees gas exchanges (oxygen and carbon
dioxide) between the blood and external
environment
Exchange of gasses takes place within the
lungs in the alveoli(only site of gas exchange,
other structures passageways
Passageways to the lungs purify, warm, and
humidify the incoming air
Shares responsibility with cardiovascular
system
Slide 3
Organs of the Respiratory systemOrgans of the Respiratory system
Slide 13.1Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Nose
Pharynx
Larynx
Trachea
Bronchi
Lungs –
alveoli
Figure 13.1
Slide 4
Slide
13.3b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.2
Upper Respiratory TractUpper Respiratory Tract
Slide 5
Anatomy of the Nasal CavityAnatomy of the Nasal Cavity
Slide
13.4a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Olfactory receptors are located in the
mucosa on the superior surface
The rest of the cavity is lined with
respiratory mucosa
Moistens air
Traps incoming foreign particles
Slide 6
Anatomy of the Nasal CavityAnatomy of the Nasal Cavity
Slide
13.4b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Lateral walls have projections called
conchae
Increases surface area
Increases air turbulence within the nasal
cavity
The nasal cavity is separated from the
oral cavity by the palate
Anterior hard palate (bone)
Posterior soft palate (muscle)
Slide 7
Paranasal SinusesParanasal Sinuses
Slide
13.5a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Cavities within bones surrounding the
nasal cavity
Frontal bone
Sphenoid bone
Ethmoid bone
Maxillary bone
Slide 8
Paranasal SinusesParanasal Sinuses
Slide
13.5b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Function of the sinuses
Lighten the skull
Act as resonance chambers for speech
Produce mucus that drains into the nasal
cavity
Slide 9
Pharynx (Throat)Pharynx (Throat)
Slide 13.6Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Muscular passage from nasal cavity to
larynx
Three regions of the pharynx
Nasopharynx – superior region behind
nasal cavity
Oropharynx – middle region behind mouth
Laryngopharynx – inferior region attached
to larynx
The oropharynx and laryngopharynx are
common passageways for air and food
Slide 10
Slide
13.3b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.2
Upper Respiratory TractUpper Respiratory Tract
Slide 11
Structures of the PharynxStructures of the Pharynx
Slide 13.7Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Auditory tubes enter the nasopharynx
Tonsils of the pharynx
Pharyngeal tonsil (adenoids) in the
nasopharynx
Palatine tonsils in the oropharynx
Lingual tonsils at the base of the tongue
Slide 12
Larynx (Voice Box)Larynx (Voice Box)
Slide 13.8Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Routes air and food into proper
channels
Plays a role in speech
Made of eight rigid hyaline cartilages
and a spoon-shaped flap of elastic
cartilage (epiglottis)
Slide 13
Structures of the LarynxStructures of the Larynx
Slide
13.9a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Thyroid cartilage
Largest hyaline cartilage
Protrudes anteriorly (Adam’s apple)
Epiglottis
Superior opening of the larynx
Routes food to the larynx and air toward
the trachea
Slide 14
Structures of the LarynxStructures of the Larynx
Slide
13.9b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Vocal cords (vocal folds)
Vibrate with expelled air to create sound
(speech)
Glottis – opening between vocal cords
Slide 15
Trachea (Windpipe)Trachea (Windpipe)
Slide
13.10
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Connects larynx with bronchi
Lined with ciliated mucosa
Beat continuously in the opposite direction of
incoming air
Expel mucus loaded with dust and other
debris away from lungs
Walls are reinforced with C-shaped
hyaline cartilage
Slide 16
Primary BronchiPrimary Bronchi
Slide
13.11
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Formed by division of the trachea
Enters the lung at the hilus
(medial depression)
Right bronchus is wider, shorter,
and straighter than left
Bronchi subdivide into smaller
and smaller branches
Slide 17
LungsLungs
Slide
13.12a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Occupy most of the thoracic cavity
Apex is near the clavicle (superior portion)
Base rests on the diaphragm (inferior
portion)
Each lung is divided into lobes by fissures
Left lung – two lobes
Right lung – three lobes
Slide 18
LungsLungs
Slide
13.12b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.4b
Slide 19
Coverings of the LungsCoverings of the Lungs
Slide
13.13
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Pulmonary (visceral) pleura covers the
lung surface
Parietal pleura lines the walls of the
thoracic cavity
Pleural fluid fills the area between layers
of pleura to allow gliding
Slide 20
Respiratory Tree DivisionsRespiratory Tree Divisions
Slide
13.14
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Primary bronchi
Secondary bronchi
Tertiary bronchi
Bronchioli
Terminal bronchioli
Slide 21
BronchiolesBronchioles
Slide
13.15a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.5a
Smallest
branches of
the bronchi
Slide 22
BronchiolesBronchioles
Slide
13.15b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.5a
All but the smallest
branches have
reinforcing cartilage
Slide 23
BronchiolesBronchioles
Slide
13.15c
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Terminal
bronchioles end
in alveoli
Figure 13.5a
Slide 24
Respiratory ZoneRespiratory Zone
Slide
13.16
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Structures
Respiratory bronchioli
Alveolar duct
Alveoli
Site of gas exchange
Slide 25
AlveoliAlveoli
Slide
13.17
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Structure of alveoli
Alveolar duct
Alveolar sac
Alveolus
Gas exchange
Slide 26
Respiratory Membrane Respiratory Membrane
(Air-Blood Barrier)(Air-Blood Barrier)
Slide
13.18a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Thin squamous epithelial layer lining
alveolar walls
Pulmonary capillaries cover external
surfaces of alveoli
Slide 27
Respiratory Membrane Respiratory Membrane
(Air-Blood Barrier)(Air-Blood Barrier)
Slide
13.18b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.6
Slide 28
Gas ExchangeGas Exchange
Slide
13.19
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Gas crosses the respiratory membrane
by diffusion
Oxygen enters the blood
Carbon dioxide enters the alveoli
Macrophages add protection
Surfactant coats gas-exposed alveolar
surfaces
Slide 29
Events of RespirationEvents of Respiration
Slide
13.20a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Pulmonary ventilation – moving air in and
out of the lungs
External respiration – gas exchange
between pulmonary blood and alveoli
Slide 30
Events of RespirationEvents of Respiration
Slide
13.20b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Respiratory gas transport – transport of
oxygen and carbon dioxide via the
bloodstream
Internal respiration – gas exchange
between blood and tissue cells in
systemic capillaries
Slide 31
Mechanics of Breathing Mechanics of Breathing
(Pulmonary Ventilation)(Pulmonary Ventilation)
Slide
13.21a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Completely mechanical process
Depends on volume changes in the
thoracic cavity
Volume changes lead to pressure
changes, which lead to the flow of
gases to equalize pressure
Slide 32
Mechanics of Breathing Mechanics of Breathing
(Pulmonary Ventilation)(Pulmonary Ventilation)
Slide
13.21b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Two phases
Inspiration – flow of air into lung
Expiration – air leaving lung
Slide 33
InspirationInspiration
Slide
13.22a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Diaphragm and intercostal muscles
contract
The size of the thoracic cavity increases
External air is pulled into the lungs due to
an increase in intrapulmonary volume
Slide 34
InspirationInspiration
Slide
13.22b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.7a
Slide 35
ExhalationExhalation
Slide
13.23a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Largely a passive process which depends
on natural lung elasticity
As muscles relax, air is pushed out of the
lungs
Forced expiration can occur mostly by
contracting internal intercostal muscles to
depress the rib cage
Slide 36
ExhalationExhalation
Slide
13.23b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.7b
Slide 37
Nonrespiratory Air MovementsNonrespiratory Air Movements
Slide
13.25
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Can be caused by reflexes or voluntary
actions
Examples
Cough and sneeze – clears lungs of debris
Laughing
Crying
Yawn
Hiccup
Slide 38
Respiratory Volumes and CapacitiesRespiratory Volumes and Capacities
Slide
13.26
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Normal breathing moves about 500 ml of air
with each breath (tidal volume [TV])
Many factors that affect respiratory capacity
A person’s size
Sex
Age
Physical condition
Residual volume of air – after exhalation,
about 1200 ml of air remains in the lungs
Slide 39
Respiratory Volumes and CapacitiesRespiratory Volumes and Capacities
Slide
13.27a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Inspiratory reserve volume (IRV)
Amount of air that can be taken in forcibly
over the tidal volume
Usually between 2100 and 3200 ml
Expiratory reserve volume (ERV)
Amount of air that can be forcibly exhaled
Approximately 1200 ml
Slide 40
Respiratory Volumes and CapacitiesRespiratory Volumes and Capacities
Slide
13.27b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Residual volume
Air remaining in lung after expiration
About 1200 ml
Slide 41
Respiratory Volumes and CapacitiesRespiratory Volumes and Capacities
Slide
13.28
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Vital capacity
The total amount of exchangeable air
Vital capacity = TV + IRV + ERV
Dead space volume
Air that remains in conducting zone and
never reaches alveoli
About 150 ml
Slide 42
Respiratory Volumes and CapacitiesRespiratory Volumes and Capacities
Slide
13.29
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Functional volume
Air that actually reaches the respiratory
zone
Usually about 350 ml
Respiratory capacities are measured
with a spirometer
Slide 43
Respiratory CapacitiesRespiratory Capacities
Slide
13.30
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.9
Slide 44
Respiratory SoundsRespiratory Sounds
Slide
13.31
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Sounds are monitored with a
stethoscope
Bronchial sounds – produced by air
rushing through trachea and bronchi
Vesicular breathing sounds – soft
sounds of air filling alveoli
Slide 45
External RespirationExternal Respiration
Slide
13.32a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Oxygen movement into the blood
The alveoli always has more oxygen than
the blood
Oxygen moves by diffusion towards the
area of lower concentration
Pulmonary capillary blood gains oxygen
Slide 46
External RespirationExternal Respiration
Slide
13.32b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Carbon dioxide movement out of the
blood
Blood returning from tissues has higher
concentrations of carbon dioxide than air in
the alveoli
Pulmonary capillary blood gives up carbon
dioxide
Blood leaving the lungs is oxygen-rich
and carbon dioxide-poor
Slide 47
Gas Transport in the BloodGas Transport in the Blood
Slide
13.33a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Oxygen transport in the blood
Inside red blood cells attached to
hemoglobin (oxyhemoglobin [HbO
2
])
A small amount is carried dissolved in the
plasma
Slide 48
Gas Transport in the BloodGas Transport in the Blood
Slide
13.33b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Carbon dioxide transport in the blood
Most is transported in the plasma as
bicarbonate ion (HCO
3
–
)
A small amount is carried inside red blood
cells on hemoglobin, but at different binding
sites than those of oxygen
Slide 49
Internal RespirationInternal Respiration
Slide
13.34a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Exchange of gases between blood and
body cells
An opposite reaction to what occurs in
the lungs
Carbon dioxide diffuses out of tissue to
blood
Oxygen diffuses from blood into tissue
Slide 50
Internal RespirationInternal Respiration
Slide
13.34b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.11
Slide 51
External Respiration, External Respiration,
Gas Transport, and Gas Transport, and
Internal Respiration Internal Respiration
SummarySummary
Slide
13.35
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.10
Slide 52
Neural Regulation of RespirationNeural Regulation of Respiration
Slide
13.36
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Activity of respiratory muscles is transmitted
to the brain by the phrenic and intercostal
nerves
Neural centers that control rate and depth are
located in the medulla
The pons appears to smooth out respiratory
rate
Normal respiratory rate (eupnea) is 12–15
respirations per minute
Hypernia is increased respiratory rate often
due to extra oxygen needs
Slide 53
Neural Regulation of RespirationNeural Regulation of Respiration
Slide
13.37
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.12
Slide 54
Factors Influencing Respiratory Factors Influencing Respiratory
Rate and DepthRate and Depth
Slide
13.38
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Physical factors
Increased body temperature
Exercise
Talking
Coughing
Volition (conscious control)
Emotional factors
Slide 55
Factors Influencing Respiratory Factors Influencing Respiratory
Rate and DepthRate and Depth
Slide
13.39a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Chemical factors
Carbon dioxide levels
Level of carbon dioxide in the blood is the
main regulatory chemical for respiration
Increased carbon dioxide increases
respiration
Changes in carbon dioxide act directly on
the medulla oblongata
Slide 56
Factors Influencing Respiratory Factors Influencing Respiratory
Rate and DepthRate and Depth
Slide
13.39b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Chemical factors (continued)
Oxygen levels
Changes in oxygen concentration in the
blood are detected by chemoreceptors in
the aorta and carotid artery
Information is sent to the medulla oblongata
Slide 57
Respiratory Disorders: Chronic Respiratory Disorders: Chronic
Obstructive Pulmonary Disease Obstructive Pulmonary Disease
(COPD)(COPD)
Slide
13.40a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Exemplified by chronic bronchitis and
emphysema
Major causes of death and disability in
the United States
Slide 58
Respiratory Disorders: Chronic Respiratory Disorders: Chronic
Obstructive Pulmonary Disease Obstructive Pulmonary Disease
(COPD)(COPD)
Slide
13.40b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Features of these diseases
Patients almost always have a history of
smoking
Labored breathing (dyspnea) becomes
progressively more severe
Coughing and frequent pulmonary
infections are common
Slide 59
Respiratory Disorders: Chronic Respiratory Disorders: Chronic
Obstructive Pulmonary Disease Obstructive Pulmonary Disease
(COPD)(COPD)
Slide
13.40c
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Features of these diseases (continued)
Most victimes retain carbon dioxide, are
hypoxic and have respiratory acidosis
Those infected will ultimately develop
respiratory failure
Slide 60
EmphysemaEmphysema
Slide
13.41
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Alveoli enlarge as adjacent chambers break
through
Chronic inflammation promotes lung fibrosis
Airways collapse during expiration
Patients use a large amount of energy to
exhale
Overinflation of the lungs leads to a
permanently expanded barrel chest
Cyanosis appears late in the disease
Slide 61
Chronic BronchitisChronic Bronchitis
Slide
13.42
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Mucosa of the lower respiratory
passages becomes severely inflamed
Mucus production increases
Pooled mucus impairs ventilation and
gas exchange
Risk of lung infection increases
Pneumonia is common
Hypoxia and cyanosis occur early
Slide 62
Chronic Obstructive Pulmonary Disease Chronic Obstructive Pulmonary Disease
(COPD)(COPD)
Slide
13.43
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 13.13
Slide 63
Lung CancerLung Cancer
Slide
13.44
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Accounts for 1/3 of all cancer deaths in
the United States
Increased incidence associated with
smoking
Three common types
Squamous cell carcinoma
Adenocarcinoma
Small cell carcinoma
Slide 64
Sudden Infant Death syndrome Sudden Infant Death syndrome
(SIDS)(SIDS)
Slide
13.45
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Apparently healthy infant stops
breathing and dies during sleep
Some cases are thought to be a
problem of the neural respiratory control
center
One third of cases appear to be due to
heart rhythm abnormalities
Slide 65
AsthmaAsthma
Slide
13.46
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Chronic inflamed hypersensitive
bronchiole passages
Response to irritants with dyspnea,
coughing, and wheezing
Slide 66
Developmental Aspects of the Developmental Aspects of the
Respiratory SystemRespiratory System
Slide
13.47a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Lungs are filled with fluid in the fetus
Lungs are not fully inflated with air until
two weeks after birth
Surfactant that lowers alveolar surface
tension is not present until late in fetal
development and may not be present in
premature babies
Slide 67
Developmental Aspects of the Developmental Aspects of the
Respiratory SystemRespiratory System
Slide
13.47b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Important birth defects
Cystic fibrosis – oversecretion of thick
mucus clogs the respiratory system
Cleft palate
Slide 68
Aging EffectsAging Effects
Slide
13.48
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Elasticity of lungs decreases
Vital capacity decreases
Blood oxygen levels decrease
Stimulating effects of carbon dioxide
decreases
More risks of respiratory tract infection
Slide 69
Respiratory Rate Changes Respiratory Rate Changes
Throughout LifeThroughout Life
Slide
13.49
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Newborns – 40 to 80 respirations per
minute
Infants – 30 respirations per minute
Age 5 – 25 respirations per minute
Adults – 12 to 18 respirations per
minute
Rate often increases somewhat with old
age
Tags
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
45
Slides
69
Age
414 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
32 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
33 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
31 views
14
Fertility awareness methods for women in the society
Isaiah47
30 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
27 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
29 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-69)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better