rotational matrix.pdf

ssuser3814ed 1,548 views 125 slides Sep 04, 2022
Slide 1
Slide 1 of 125
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125

About This Presentation

the required presentation of rotate matrix s given under this presentation


Slide Content

Transformation Matrices
Dr.-Ing. John Nassour
Artificial Intelligence & Neuro Cognitive Systems
FakultätfürInformatik
�
0
�
0
�
1
�
1
�
1
�
�
2
�
2
�
2
�
??????
�
??????
�
??????

Suggested literature
•Robot Modeling andControl
•Robotics: Modelling, Planning and Control
10/17/2017

10/17/2017
Motivation
Alargepartofrobotkinematicsisconcernedwiththe
establishmentofvariouscoordinatesystemstorepresentthe
positionsandorientationsofrigidobjects,andwith
transformationsamongthesecoordinatesystems.
Indeed,thegeometryofthree-dimensionalspaceandofrigid
motionsplaysacentralroleinallaspectsofroboticmanipulation.
Arigidmotionistheactionoftakinganobjectandmovingittoa
differentlocationwithoutalteringitsshapeorsize

10/17/2017
Transformation
TheoperationsofROTATIONandTRANSLATION.
IntroducethenotionofHOMOGENEOUS
TRANSFORMATIONS(combiningtheoperations
ofrotationandtranslationintoasinglematrix
multiplication).

10/17/2017
Representing Positions
Thecoordinatevectorsthat
representthelocationofthe
point�inspacewithrespectto
coordinateframes�
��
��
�and
�
��
��
�,respectivelyare:

10/17/2017
Representing Positions
Letsassigncoordinatesthat
representthepositionoftheorigin
ofonecoordinatesystem(frame)
withrespecttoanother.

10/17/2017
Representing Positions
Whatisthedifference
betweenthegeometric
entitycalled�andany
particularcoordinate
vector??????thatisassigned
torepresent�?
�isindependentofthechoiceofcoordinatesystems.
??????dependsonthechoiceofcoordinateframes.

10/17/2017
Representing Positions
Apointcorrespondstoaspecific
locationinspace.
Avectorspecifiesadirectionand
amagnitude(e.g.displacements
orforces).
Thepoint�isnotequivalentto
thevector??????
�,thedisplacement
fromtheorigin�
�tothepoint�
isgivenbythevector??????
�.
We will use the term vectorto refer to what are sometimes called free vectors, i.e.,
vectors that are not constrained to be located at a particular point in space.

10/17/2017
Representing Positions
Whenassigningcoordinatesto
vectors,weusethesamenotational
conventionthatweusedwhen
assigningcoordinatestopoints.
Thus,??????
�and??????
�aregeometric
entitiesthatareinvariantwith
respecttothechoiceofcoordinate
systems,buttherepresentationby
coordinatesofthesevectors
dependsdirectlyonthechoiceof
referencecoordinateframe.

10/17/2017
Coordinate Convention
Inordertoperformalgebraicmanipulationsusing
coordinates,itisessentialthatallcoordinatevectors
bedefinedwithrespecttothesamecoordinate
frame.
Inthecaseoffreevectors,itisenoughthattheybe
definedwithrespecttoparallelcoordinateframes.

10/17/2017
Coordinate Convention
An expression of the form:
is not defined since the frames
�
��
��
�and�
��
��
�are not
parallel.

10/17/2017
Coordinate Convention
An expression of the form:
is not defined since the frames
�
��
��
�and�
��
��
�are not
parallel.
Thus,weseeaclearneed,notonlyforarepresentationsystemthatallowspointsto
beexpressedwithrespecttovariouscoordinatesystems,butalsoforamechanism
thatallowsustotransformthecoordinatesofpointsthatareexpressedinone
coordinatesystemintotheappropriatecoordinateswithrespecttosomeother
coordinateframe.

10/17/2017
Representing Rotations
Inordertorepresenttherelative
positionandorientationofonerigid
bodywithrespecttoanother,wewill
rigidlyattachcoordinateframesto
eachbody,andthenspecifythe
geometricrelationshipsbetween
thesecoordinateframes.

10/17/2017
Representing Rotations
Inordertorepresenttherelative
positionandorientationofonerigid
bodywithrespecttoanother,wewill
rigidlyattachcoordinateframesto
eachbody,andthenspecifythe
geometricrelationshipsbetween
thesecoordinateframes.

10/17/2017
Representing Rotations
Inordertorepresenttherelative
positionandorientationofonerigid
bodywithrespecttoanother,wewill
rigidlyattachcoordinateframesto
eachbody,andthenspecifythe
geometricrelationshipsbetween
thesecoordinateframes.
How to describe the orientation of one coordinate frame relative to another frame?

10/17/2017
Rotation In The Plane

10/17/2017
Rotation In The Plane
Fram�
��
��
�isobtainedbyrotating
frame�
��
��
�byanangle??????.
Thecoordinatevectorsfortheaxesof
frame�
��
��
�withrespecttocoordinate
frame�
��
��
�aredescribedbyarotation
matrix:
where�
�
�
and �
�
�
are the coordinates in frame �
��
��
�of unit
vectors �
�and �
�, respectively.

10/17/2017
Rotation In The Plane
�
�
�
is a matrix whose column vectors are the coordinates of the (unit vectors along the)
axes of frame �
��
��
�expressed relative to frame �
��
��
�.

10/17/2017
Rotation In The Plane
�
�
�
describes the orientation of frame �
��
��
�with respect to the frame �
��
��
�.
The dot product of two unit vectors gives the
projection of one onto the other
�
�
�
=?

10/17/2017
Rotation In The Plane
The dot product of two unit vectors gives the
projection of one onto the other
The orientation of frame �
��
��
�with
respect to the frame �
��
��
�.
Since the inner product is commutative

10/17/2017
Rotations In Three Dimensions
Each axis of the frame �
��
��
��
�is projected onto coordinate frame �
��
��
��
�.
The resulting rotation matrix is given by:

10/17/2017
Rotation About �
�By An Angle ??????

10/17/2017
Rotation About �
�By An Angle ??????
Called a basic rotation matrix (about the z-axis)�
�,??????

10/17/2017
Basic Rotation Matrix About The Z-axis

10/17/2017
Basic Rotation Matrix About The X-axis
�
�,??????

10/17/2017
Basic Rotation Matrix About The Y-axis
�
�,??????

10/17/2017
Example
Find the description of frame �
��
��
��
�with respect to the frame �
��
��
��
�.

10/17/2017
Example
The coordinates of �
�are
The coordinates of �
�are
The coordinates of �
�are
Find the description of frame�
��
��
��
�with respect to the frame �
��
��
��
�.

10/17/2017
Example
Find the description of frame�
��
��
��
�with respect to the frame �
��
��
��
�.
The coordinates of �
�are
The coordinates of �
�are
The coordinates of �
�are

10/17/2017
Rotational Transformations
�is a rigid object to which a coordinate ������
is attached.
Given�
�
of the point �, determine the coordinates
of �relative to a fixed reference ������.
The projection of the point �onto the
coordinate axes of the ������:

10/17/2017
Rotational Transformations

10/17/2017
Rotational Transformations
Thus,therotationmatrix�
�
�
canbeusednot
onlytorepresenttheorientationofcoordinate
frame�
��
��
��
�withrespecttoframe
�
��
��
��
�,butalsototransformthe
coordinatesofapointfromoneframeto
another.
Ifagivenpointisexpressedrelativeto
�
��
��
��
�bycoordinates�
�
,then�
�
�
�
�
representsthesamepointexpressedrelative
totheframe�
��
��
��
�.

10/17/2017
Rotational Transformations
It is possible to derive the coordinates for �
�given only the coordinates for
�
�and the rotation matrix that corresponds to the rotation about �
�.
Suppose that a coordinate frame �
��
��
��
�is rigidly attached to the block.
After the rotation by ??????, the block’s coordinate frame, which is rigidly attached
to the block, is also rotated by ??????.
Rotation matrices to represent rigid
motions

10/17/2017
Rotational Transformations
The coordinates of �
�with respect to the reference frame �
��
��
��
�:
Rotation matrices to represent rigid
motions

10/17/2017
Rotational Transformations
Rotation matrices to represent vector rotation with
respect to a coordinate frame.
Reminder:

10/17/2017
Summary: Rotation Matrix
1.It represents a coordinate transformation
relating the coordinates of a point p in two
different frames.
2. It gives the orientation of a transformed
coordinate frame with respect to a fixed
coordinate frame.
3. It is an operatortaking a vector and rotating it
to a new vector in the same coordinate system.

10/17/2017
Similarity Transformations
The matrix representation of a general linear transformation is transformed from one
frame to another using a so-called similarity transformation.
For example, if �is the matrix representation of a given linear transformation in
�
��
��
��
�and �is the representation of the same linear transformation in
�
��
��
��
�then �and �are related as:
where �
�
�
is the coordinate transformation between frames �
��
��
��
�and
�
��
��
��
�. In particular, if �itself is a rotation, then so is �, and thus the use of
similarity transformations allows us to express the same rotation easily with respect to
different frames.

10/17/2017
Example
Suppose frames �
��
��
��
�and �
��
��
��
�are related
by the rotation
If �=�
�relative to the frame �
��
��
��
�, then, relative to frame �
��
��
��
�we have
�is a rotation about the ��−����but expressed relative to the frame �
��
��
��
�.

10/17/2017
Rotation With Respect To The Current
Frame
Thematrix�
�
�
representsarotationaltransformationbetweentheframes�
��
��
��
�
and�
��
��
��
�.
Supposewenowaddathirdcoordinateframe�
��
��
��
�relatedtotheframes
�
��
��
��
�and�
��
��
��
�byrotationaltransformations.
Agivenpoint�canthenberepresentedbycoordinatesspecifiedwithrespecttoanyof
thesethreeframes:�
�
,�
�
and�
�
.
The relationship among these representations of �is:
where each�
�
�
is a rotation matrix

10/17/2017
Inordertotransformthecoordinatesofapoint�fromits
representation�
�
intheframe�
��
��
��
�toitsrepresentation
�
�
intheframe�
��
��
��
�,wemayfirsttransformtoits
coordinates�
�
intheframe�
��
��
��
�using�
�
�
andthen
transform�
�
to�
�
using�
�
�
.
Composition Law for Rotational
Transformations

10/17/2017
Composition Law for Rotational
Transformations
Coincident: lie exactly on top of each other
Suppose initially that all three of the coordinate frames are coincide.
We first rotate the frame �
��
��
��
�relative to �
��
��
��
�according to the
transformation �
�
�
.
Then, with the frames �
��
��
��
�and �
��
��
��
�coincident, we rotate�
��
��
��
�
relative to �
��
��
��
�according to the transformation �
�
�
.
In each case we call the frame relative to which the rotation occurs the current frame.

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about the current �−����followed by
•a rotation of angle ??????about the current �−����.

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about the current �−����followed by
•a rotation of angle ??????about the current �−����.

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about the current �−����followed by
•a rotation of angle ??????about the current �−����.

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about the current �−����followed by
•a rotation of angle ??????about the current �−����.

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about the current �−����followedby
•a rotation of angle ??????about the current �−����

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about the current �−����followedby
•a rotation of angle ??????about the current �−����

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about the current �−����followedby
•a rotation of angle ??????about the current �−����
Rotational transformations do not commute

10/17/2017
Rotation With Respect To The Fixed
Frame
Performing a sequence of rotations, each about a given fixed coordinate frame, rather
than about successive current frames.
For example we may wish to perform a rotation about �
�followed by a rotation about
�
�(and not �
�!). We will refer to �
��
��
��
�as the fixed frame. In this case the
composition law given before is not valid.
The composition law that was obtained by multiplying the successive rotation matrices
in the reverse order from that given by is not valid.

10/17/2017
Rotation with Respect to the Fixed Frame
Suppose we have two frames �
��
��
��
�and
�
��
��
��
�related by the rotational transformation �
�
�
.
If �represents a rotation relative to �
��
��
��
�, the
representation for �in the current frame �
��
��
��
�is given
by:
Similarity Transformations
With applying the composition law for rotations about the
current axis:
composition law for
rotations about the
current axis
Reminder:

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about �
�−����followedby
•a rotation of angle??????about the fixed �
�−����
Similarity Transformations
Reminder:
composition law for
rotations about the
current axis
composition law for
rotations about the fixed
axis
The secondrotation about the fixed axis is given by
which is the basic rotation about the z-axis expressed relative
to the frame �
��
��
��
�using a similarity transformation.

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about �
�−����followedby
•a rotation of angle??????about the fixed �
�−����
Similarity Transformations
Reminder:
composition law for
rotations about the
current axis
composition law for
rotations about the fixed
axis
Therefore, the composition rule for rotational transformations

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about �
�−����followedby
•a rotation of angle??????about the fixed �
�−����

10/17/2017
Example
Suppose a rotation matrix R represents
•a rotation of angle ??????about �
�−����followedby
•a rotation of angle??????about the fixed�
�−����
Suppose a rotation matrix R represents
•a rotation of angle ??????about the current�−����followed by
•a rotation of angle ??????about the current�−����.

10/17/2017
Summary
To note that we obtain the same basic rotation matrices, but in the reverse order.
Rotation with Respect to
the Fixed Frame
Rotation with Respect to
the Current Frame

10/17/2017
Rules for Composition of Rotational
Transformations
Wecansummarizetheruleofcompositionofrotationaltransformationsby:
Givenafixedframe�
��
��
��
�acurrentframe�
��
��
��
�,togetherwithrotation
matrix�
�
�
relatingthem,ifathirdframe�
��
��
��
�isobtainedbyarotation�
performedrelativetothecurrentframethenpost-multiply�
�
�
by�=�
�
�
toobtain
In each case �
�
�
represents the transformation between the frames �
��
��
��
�and
�
��
��
��
�.
If the second rotation is to be performed relative to the fixed frame then it is both
confusing and inappropriate to use the notation �
�
�
to represent this rotation. Therefore,
if we represent the rotation by �, we pre-multiply �
�
�
by �to obtain

10/17/2017
Example
Find Rfor the following sequence of basic rotations:
1.A rotation of ϴabout the current x-axis
2.A rotation of φabout the current z-axis
3.A rotation of αabout the fixed z-axis
4.A rotation of βabout the current y-axis
5.A rotation of δabout the fixed x-axis
Rotation with Respect to
the Fixed Frame
Rotation with Respect to
the Current Frame
Reminder:

10/17/2017
Example
Find Rfor the following sequence of basic rotations:
1.A rotation of ϴabout the current x-axis
2.A rotation of φabout the current z-axis
3.A rotation of αabout the fixed z-axis
4.A rotation of βabout the current y-axis
5.A rotation of δabout the fixed x-axis
Rotation with Respect to
the Fixed Frame
Rotation with Respect to
the Current Frame
Reminder:

10/17/2017
Example
Find Rfor the following sequence of basic rotations:
1.A rotation of ϴabout the current x-axis
2.A rotation of φabout the current z-axis
3.A rotation of αabout the fixed z-axis
4.A rotation of βabout the current y-axis
5.A rotation of δabout the fixed x-axis
Rotation with Respect to
the Fixed Frame
Rotation with Respect to
the Current Frame
Reminder:

10/17/2017
Example
Find Rfor the following sequence of basic rotations:
1.A rotation of ϴabout the current x-axis
2.A rotation of φabout the current z-axis
3.A rotation of αabout the fixed z-axis
4.A rotation of βabout the current y-axis
5.A rotation of δabout the fixed x-axis
Rotation with Respect to
the Fixed Frame
Rotation with Respect to
the Current Frame
Reminder:

10/17/2017
Example
Find Rfor the following sequence of basic rotations:
1.A rotation of ϴabout the current x-axis
2.A rotation of φabout the current z-axis
3.A rotation of αabout the fixed z-axis
4.A rotation of βabout the current y-axis
5.A rotation of δabout the fixed x-axis
Rotation with Respect to
the Fixed Frame
Rotation with Respect to
the Current Frame
Reminder:

10/17/2017
Example
Find Rfor the following sequence of basic rotations:
1.A rotation of ϴabout the current x-axis
2.A rotation of φabout the current z-axis
3.A rotation of αabout the fixed z-axis
4.A rotation of βabout the current y-axis
5.A rotation of δabout the fixed x-axis
Rotation with Respect to
the Fixed Frame
Rotation with Respect to
the Current Frame
Reminder:

10/17/2017
Example
Find Rfor the following sequence of basic rotations:
1.A rotation of δabout the fixed x-axis
2.A rotation of βabout the current y-axis
3.A rotation of αabout the fixed z-axis
4.A rotation of φabout the current z-axis
5.A rotation of ϴabout the current x-axis
Rotation with Respect to
the Fixed Frame
Rotation with Respect to
the Current Frame
Reminder:

10/17/2017
Rotations in Three Dimensions
Each axis of the frame �
��
��
��
�is projected onto the coordinate frame
�
��
��
��
�.
The resulting rotation matrix is given by
Reminder:
The nine elements �
��in a general rotational transformation Rare not independent
quantities.
�??????���
Where ��(n)denotes the Special Orthogonal group of order n.

10/17/2017
Rotations In Three Dimensions
For any �??????�??????�The following properties hold
•�
??????
=�
−1
??????�??????�
•The columns and the rows of �are mutually orthogonal
•Each column and each row of �is a unit vector
•det�=1(the determinant)
Where �??????(n) denotes the Special Orthogonal group of order n.
Example for �
�
=�
−�
??????���:

10/17/2017
Parameterizations Of Rotations
As each column of �is a unit vector, then we can
write:
As the columns of �are mutually orthogonal, then
we can write:
Together, these constraints define six independent equations with nine unknowns, which
implies that there are three free variables.
The nine elements �
��in a general rotational transformation R are not independent
quantities.
�??????�??????3
Where �??????(n) denotes the Special Orthogonal group of order n.

10/17/2017
We present three ways in which an arbitrary rotation can be represented using only three
independent quantities:
•Euler Angles representation
•Roll-Pitch-Yawrepresentation
•Axis/Anglerepresentation
Parameterizations of Rotations

10/17/2017
Euler Angles Representation
We can specify the orientation of the frame �
��
��
��
�relative to the frame�
��
��
��
�by
three angles (??????,??????,??????), known as Euler Angles, and obtained by three successive rotations as
follows:
1.rotation about thez-axisby the angle ??????
2.rotationaboutthecurrenty−axisbytheangle??????
3.rotationaboutthecurrentz−axisbytheangle??????

10/17/2017
Euler Angles Representation

10/17/2017

10/17/2017
Trigonometry (Atanvs. Atan2)
Reminder:

Trigonometry (Atanvs. Atan2)
Reminder:
10/17/2017

10/17/2017
Trigonometry (Atanvs. Atan2)
Reminder:
tan(angle) = opposite/adjacent
atan(opposite/adjacent) = angle

10/17/2017
Euler Angles Representation
Given a matrix �??????�??????3
Determinea set of Euler angles??????,??????,and??????so that�=�
���
If �
��≠�and�
��≠�,
itfollowthat:??????=Atan2(�
��,�
��)
where the function ??????�??????�2(�,�)computes the arctangent of the ration �/�.
Then squaring the summing of the elements (1,3) and (2,3) and using the element (3,3)
yields:
??????=Atan2(+�
��
�
+�
��
�
,�
��) or??????=Atan2(−�
��
�
+�
��
�
,�
��)
If we consider the first choice then ���(??????)>�then: ??????=Atan2(�
��,−�
��)
If we consider the second choice then &#3627408532;&#3627408522;&#3627408527;??????<&#3627409358;then: ??????=Atan2(−&#3627408531;
&#3627409361;&#3627409360;,&#3627408531;
&#3627409361;&#3627409359;)
and ??????=Atan2(−&#3627408531;
&#3627409360;&#3627409361;,−&#3627408531;
&#3627409359;&#3627409361;)

10/17/2017
Euler Angles Representation
Given a matrix &#3627408453;??????&#3627408454;??????3
Determinea set of Euler angles??????,??????,and??????so that&#3627408505;=&#3627408505;
&#3627408513;&#3627408512;&#3627408513;
If &#3627408531;
&#3627409359;&#3627409361;=&#3627408531;
&#3627409360;&#3627409361;=&#3627409358;,thenthe fact that R is orthogonal implies that &#3627408531;
&#3627409361;&#3627409361;=±&#3627409359;and that &#3627408531;
&#3627409361;&#3627409359;
=&#3627408531;
&#3627409361;&#3627409360;=&#3627409358;thus R has the form:
If &#3627408531;
&#3627409361;&#3627409361;=+&#3627409359;then &#3627408464;
??????=1and &#3627408480;
??????=0, so that??????=0.
Thus, the sum ??????+??????can be determined as ??????+??????= Atan2(&#3627408531;
&#3627409360;&#3627409359;,&#3627408531;
&#3627409359;&#3627409359;) = Atan2(−&#3627408531;
&#3627409359;&#3627409360;,&#3627408531;
&#3627409360;&#3627409360;)
There is infinity of solutions.

10/17/2017
Euler Angles Representation
Given a matrix &#3627408453;??????&#3627408454;??????3
Determinea set of Euler angles??????,??????,and??????so that&#3627408505;=&#3627408505;
&#3627408513;&#3627408512;&#3627408513;
If &#3627408531;
&#3627409359;&#3627409361;=&#3627408531;
&#3627409360;&#3627409361;=&#3627409358;,thenthe fact that R is orthogonal implies that &#3627408531;
&#3627409361;&#3627409361;=±&#3627409359;and that &#3627408531;
&#3627409361;&#3627409359;
=&#3627408531;
&#3627409361;&#3627409360;=&#3627409358;thus R has the form:
If &#3627408531;
&#3627409361;&#3627409361;=−&#3627409359;then &#3627408464;
??????=−1and &#3627408480;
??????=0, so that??????=π.
Thus, the ??????−??????can be determined as ??????−??????= Atan2(−&#3627408531;
&#3627409359;&#3627409360;,−&#3627408531;
&#3627409359;&#3627409359;) = Atan2(&#3627408531;
&#3627409360;&#3627409359;,&#3627408531;
&#3627409360;&#3627409360;)
As before there is infinity of solutions.

10/17/2017
Yaw-Pitch-RollRepresentation
A rotation matrix &#3627408505;can also be described as a product of successive rotations about the
principal coordinate axes&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;taken in a specific order. These rotations define
the roll, pitch, and yawangles, which we shall also denote (??????,??????,??????)
We specify the order in three successive rotations as follows:
1.Yaw rotation about &#3627408537;
&#3627409358;−axisby the angle??????
2.Pitchrotationabout&#3627408538;
&#3627409358;−axisbytheangle??????
3.Roll rotationabout&#3627408539;
&#3627409358;−axisbytheangle??????
Since the successive rotations are relative to the fixed
frame, the resulting transformation matrix is given by:

10/17/2017
Yaw-Pitch-Roll Representation
A rotation matrix &#3627408505;can also be described as a product of successive rotations about the
principal coordinate axes&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;taken in a specific order. These rotations define
the roll, pitch, and yawangles, which we shall also denote (??????,??????,??????)
We specify the order in three successive rotations as follows:
1.Yaw rotation about &#3627408537;
&#3627409358;−axisby the angle??????
2.Pitchrotationabout&#3627408538;
&#3627409358;−axisbytheangle??????
3.Roll rotationabout&#3627408539;
&#3627409358;−axisbytheangle??????
Since the successive rotations are relative to the fixed
frame, the resulting transformation matrix is given by:

10/17/2017
Yaw-Pitch-Roll Representation
A rotation matrix &#3627408505;can also be described as a product of successive rotations about the
principal coordinate axes&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;taken in a specific order. These rotations define
the roll, pitch, and yawangles, which we shall also denote (??????,??????,??????)
We specify the order in three successive rotations as follows:
1.Yaw rotation about &#3627408537;
&#3627409358;−axisby the angle??????
2.Pitchrotationabout&#3627408538;
&#3627409358;−axisbytheangle??????
3.Roll rotationabout&#3627408539;
&#3627409358;−axisbytheangle??????
Since the successive rotations are relative to the fixed
frame, the resulting transformation matrix is given by:

10/17/2017
Yaw-Pitch-Roll Representation
A rotation matrix &#3627408505;can also be described as a product of successive rotations about the
principal coordinate axes&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;taken in a specific order. These rotations define
the roll, pitch, and yawangles, which we shall also denote (??????,??????,??????)
We specify the order in three successive rotations as follows:
1.Yaw rotation about &#3627408537;
&#3627409358;−axisby the angle??????
2.Pitchrotationabout&#3627408538;
&#3627409358;−axisbytheangle??????
3.Roll rotationabout&#3627408539;
&#3627409358;−axisbytheangle??????
Since the successive rotations are relative to the fixed
frame, the resulting transformation matrix is given by:

10/17/2017
Yaw-Pitch-Roll Representation
A rotation matrix &#3627408505;can also be described as a product of successive rotations about the
principal coordinate axes&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;taken in a specific order. These rotations define
the roll, pitch, and yawangles, which we shall also denote (??????,??????,??????)
We specify the order in three successive rotations as follows:
1.Yaw rotation about &#3627408537;
&#3627409358;−axisby the angle??????
2.Pitchrotationabout&#3627408538;
&#3627409358;−axisbytheangle??????
3.Roll rotationabout&#3627408539;
&#3627409358;−axisbytheangle??????
Since the successive rotations are relative to the fixed
frame, the resulting transformation matrix is given by:

10/17/2017
Yaw-Pitch-Roll Representation
A rotation matrix &#3627408505;can also be described as a product of successive rotations about the
principal coordinate axes&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;taken in a specific order. These rotations define
the roll, pitch, and yawangles, which we shall also denote (??????,??????,??????)
We specify the order in three successive rotations as follows:
1.Yaw rotation about &#3627408537;
&#3627409358;−axisby the angle??????
2.Pitchrotationabout&#3627408538;
&#3627409358;−axisbytheangle??????
3.Roll rotationabout&#3627408539;
&#3627409358;−axisbytheangle??????
Since the successive rotations are relative to the fixed
frame, the resulting transformation matrix is given by:
Instead of yaw-pitch-roll relative to the fixedframes we could
also interpret the above transformation as roll-pitch-yaw, in
that order, each taken with respect to the currentframe.
The end result is the same matrix.
??????
??????
??????

10/17/2017
Yaw-Pitch-Roll Representation
Find the inverse solution to a given rotation matrix R.
Determinea set of Roll-Pitch-Yaw angles??????,??????,and??????so that&#3627408505;
=&#3627408505;
&#3627408511;&#3627408512;&#3627408513;
??????
??????
??????

10/17/2017
Axis/Angle Representation
Rotations are not always performed about the principal coordinate axes. We are often
interested in a rotation about an arbitrary axis in space. This provides both a convenient
way to describe rotations, and an alternative parameterization for rotation matrices.
Let &#3627408524;=[&#3627408524;
&#3627408537;,&#3627408524;
&#3627408538;,&#3627408524;
&#3627408539;]
&#3627408507;
, expressed in the frame &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;, be
a unit vector defining an axis. We wish to derive the rotation
matrix &#3627408505;
&#3627408524;,??????representing a rotation of ??????about this axis.
A possible solution is to rotate first &#3627408524;by the angles necessary
to align it with &#3627408539;, then to rotate by ??????about &#3627408539;, and finally to
rotate by the angels necessary to align the unit vector with
the initial direction.

10/17/2017
Axis/Angle Representation
Rotations are not always performed about the principal coordinate axes. We are often
interested in a rotation about an arbitrary axis in space. This provides both a convenient
way to describe rotations, and an alternative parameterization for rotation matrices.
Let &#3627408524;=[&#3627408524;
&#3627408537;,&#3627408524;
&#3627408538;,&#3627408524;
&#3627408539;]
&#3627408507;
, expressed in the frame &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;, be
a unit vector defining an axis. We wish to derive the rotation
matrix &#3627408505;
&#3627408524;,??????representing a rotation of ??????about this axis.
The sequence of rotations to be made with respect to axes of
fixed frame is the following:
•Align &#3627408524;with &#3627408539;(which is obtained as the sequence of a
rotation by −&#3627409206;about &#3627408539;and a rotation of −&#3627409207;about &#3627408538;).
•Rotate by ??????about &#3627408539;.
•Realignwith the initial direction of &#3627408524;, which is obtained as
the sequence of a rotation by &#3627409207;about &#3627408538;and a rotation by
&#3627409206;about &#3627408539;.
&#3627408505;
&#3627408524;,??????=&#3627408505;
&#3627408539;,&#3627409206;&#3627408505;
&#3627408538;,&#3627409207;&#3627408505;
&#3627408539;,??????&#3627408505;
&#3627408538;,−&#3627409207;&#3627408505;
&#3627408539;,−&#3627409206;

10/17/2017
Axis/Angle Representation
&#3627408505;
&#3627408524;,??????=&#3627408505;
&#3627408539;,&#3627409206;&#3627408505;
&#3627408538;,&#3627409207;&#3627408505;
&#3627408539;,??????&#3627408505;
&#3627408538;,−&#3627409207;&#3627408505;
&#3627408539;,−&#3627409206;

10/17/2017
Axis/Angle Representation
Rotations are not always performed about the principal coordinate axes. We are often
interested in a rotation about an arbitrary axis in space. This provides both a convenient
way to describe rotations, and an alternative parameterization for rotation matrices.
&#3627408505;
&#3627408524;,??????=&#3627408505;
&#3627408539;,&#3627409206;&#3627408505;
&#3627408538;,&#3627409207;&#3627408505;
&#3627408539;,??????&#3627408505;
&#3627408538;,−&#3627409207;&#3627408505;
&#3627408539;,−&#3627409206;

10/17/2017
Axis/Angle Representation
Any rotation matrix &#3627408453;??????&#3627408454;??????3can be represented by a single
rotation about a suitable axis in space by a suitable angle.
&#3627408505;=&#3627408505;
&#3627408524;,??????
where &#3627408524;is a unit vector defining the axis of rotation, and ??????is
the angle of rotation about &#3627408524;.
The matrix &#3627408505;
&#3627408524;,??????is called the axis/angle representation of &#3627408505;.
Given &#3627408505;find ??????and &#3627408524;:
Reminder:

10/17/2017
Axis/Angle Representation
The axis/angle representation is not unique since
a rotation of −??????about −&#3627408524;is the same as a
rotation of ??????about &#3627408524;.
&#3627408505;
&#3627408524;,??????=&#3627408505;
−&#3627408524;,−??????
If??????=&#3627409358;then &#3627408505;istheidentitymatrixandthe
axisofrotationisundefined.

10/17/2017
Example
Suppose &#3627408505;is generated by a rotation of 90
°
about &#3627408487;
0followed by a rotation of 30
°
about
&#3627408486;
0followed by a rotation of 60
°
about &#3627408485;
0. Find the axis/angle representation of &#3627408505;
Reminder:
The axis/angle representation of &#3627408505;

10/17/2017
Example
Suppose &#3627408505;is generated by a rotation of 90
°
about &#3627408487;
0followed by a rotation of 30
°
about
&#3627408486;
0followed by a rotation of 60
°
about &#3627408486;
0. Find the axis/angle representation of &#3627408505;
Reminder:
The axis/angle representation of &#3627408505;

10/17/2017
Example
Suppose &#3627408505;is generated by a rotation of 90
°
about &#3627408487;
0followed by a rotation of 30
°
about
&#3627408486;
0followed by a rotation of 60
°
about &#3627408486;
0. Find the axis/angle representation of &#3627408505;
Reminder:
The axis/angle representation of &#3627408505;

10/17/2017
Example
Suppose &#3627408505;is generated by a rotation of 90
°
about &#3627408487;
0followed by a rotation of 30
°
about
&#3627408486;
0followed by a rotation of 60
°
about &#3627408486;
0. Find the axis/angle representation of &#3627408505;
Reminder:
The axis/angle representation of &#3627408505;

10/17/2017
Example
Suppose &#3627408505;is generated by a rotation of 90
°
about &#3627408487;
0followed by a rotation of 30
°
about
&#3627408486;
0followed by a rotation of 60
°
about &#3627408485;
0. Find the axis/angle representation of &#3627408505;
Reminder:
The axis/angle representation of &#3627408505;

10/17/2017
Axis/Angle Representation
Theaboveaxis/anglerepresentationcharacterizesagiven
rotationbyfourquantities,namelythethreecomponents
oftheequivalentaxis&#3627408524;andtheequivalentangle??????.
However,sincetheequivalentaxis&#3627408524;isgivenasaunit
vectoronlytwoofitscomponentsareindependent.
Thethirdisconstrainedbytheconditionthat&#3627408524;isofunit
length.
Therefore,onlythreeindependentquantitiesare
requiredinthisrepresentationofarotation&#3627408505;.Wecan
representtheequivalentaxis/anglebyasinglevector&#3627408531;
as:
since&#3627408524;isaunitvector,thelengthofthevector&#3627408531;isthe
equivalentangle??????andthedirectionof&#3627408531;istheequivalent
axis&#3627408524;.

10/17/2017
Rigid Motions
Arigidmotionisapuretranslationtogetherwithapurerotation.
Arigidmotionisanorderedpair(&#3627408517;,&#3627408505;)where&#3627408517;∈ℝ
&#3627409361;
and&#3627408505;
∈&#3627408506;&#3627408502;&#3627409361;.ThegroupofallrigidmotionsisknownastheSpecial
EuclideanGroupandisdenotedby&#3627408506;??????&#3627409361;.Weseethenthat
&#3627408506;??????&#3627409361;=ℝ
&#3627409361;
×&#3627408506;&#3627408502;&#3627409361;.

10/17/2017
One Rigid Motion
Ifframe&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;isobtainedfromframe&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;byfirstapplyingarotation
specifiedby&#3627408505;
&#3627409359;
&#3627409358;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1

10/17/2017
One Rigid Motion
Ifframe&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;isobtainedfromframe&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;byfirstapplyingarotation
specifiedby&#3627408505;
&#3627409359;
&#3627409358;
followedbyatranslationgiven(withrespectto&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;)by&#3627408517;
&#3627409359;
&#3627409358;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1

10/17/2017
One Rigid Motion
Ifframe&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;isobtainedfromframe&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;byfirstapplyingarotation
specifiedby&#3627408505;
&#3627409359;
&#3627409358;
followedbyatranslationgiven(withrespectto&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;)by&#3627408517;
&#3627409359;
&#3627409358;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408517;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408529;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1

10/17/2017
One Rigid Motion
Ifframe&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;isobtainedfromframe&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;byfirstapplyingarotation
specifiedby&#3627408505;
&#3627409359;
&#3627409358;
followedbyatranslationgiven(withrespectto&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;)by&#3627408517;
&#3627409359;
&#3627409358;
,
thenthecoordinates&#3627408529;
&#3627409358;
aregivenby:
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408517;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408529;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627409358;
&#3627408529;
&#3627409359;

10/17/2017
One Rigid Motion
Ifframe&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;isobtainedfromframe&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;byfirstapplyingarotation
specifiedby&#3627408505;
&#3627409359;
&#3627409358;
followedbyatranslationgiven(withrespectto&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;)by&#3627408517;
&#3627409359;
&#3627409358;
,
thenthecoordinates&#3627408529;
&#3627409358;
aregivenby:
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408529;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408517;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408529;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627409358;
&#3627408529;
&#3627409359;

10/17/2017
One Rigid Motion
Ifframe&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;isobtainedfromframe&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;byfirstapplyingarotation
specifiedby&#3627408505;
&#3627409359;
&#3627409358;
followedbyatranslationgiven(withrespectto&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;)by&#3627408517;
&#3627409359;
&#3627409358;
,
thenthecoordinates&#3627408529;
&#3627409358;
aregivenby:
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408529;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408517;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408529;
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627409358;
&#3627408529;
&#3627409359;

10/17/2017
Two Rigid Motions
Ifframe&#3627408528;
&#3627409360;&#3627408537;
&#3627409360;&#3627408538;
&#3627409360;&#3627408539;
&#3627409360;isobtainedfromframe&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;byfirstapplyingarotation
specifiedby&#3627408505;
&#3627409360;
&#3627409359;
followedbyatranslationgiven(withrespectto&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;)by&#3627408517;
&#3627409360;
&#3627409359;
.
Ifframe&#3627408528;
&#3627409359;&#3627408537;
&#3627409359;&#3627408538;
&#3627409359;&#3627408539;
&#3627409359;isobtainedfromframe&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;byfirstapplyingarotation
specifiedby&#3627408505;
&#3627409359;
&#3627409358;
followedbyatranslationgiven(withrespectto&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;)by&#3627408517;
&#3627409359;
&#3627409358;
,
findthecoordinates&#3627408529;
&#3627409358;
.
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
For the first rigid motion:
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408529;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
For the second rigid motion:
&#3627408529;
&#3627409359;
=&#3627408505;
&#3627409360;
&#3627409359;
&#3627408529;
&#3627409360;
+&#3627408517;
&#3627409360;
&#3627409359;
Both rigid motions can be described as one rigid
motion:
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409360;
&#3627409358;
&#3627408529;
&#3627409360;
+&#3627408517;
&#3627409360;
&#3627409358;
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408529;
&#3627409360;
+&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;

10/17/2017
Two Rigid Motions
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408505;
&#3627409360;
&#3627409358;
The orientation transformations can simply be multiplied together.
&#3627408517;
&#3627409360;
&#3627409358;
The translation transformation is the sum of:
•&#3627408517;
&#3627409359;
&#3627409358;
the vector from the origin &#3627408476;
0to the origin &#3627408476;
1expressed with respect to &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
•&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
the vector from &#3627408476;
1to &#3627408476;
2expressed in the orientation of the coordinate system
&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408529;
&#3627409360;
+&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;

10/17/2017
Three Rigid Motions
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408529;
&#3627409358;
=?
&#3627408487;
3
&#3627408486;
3
&#3627408485;
3

10/17/2017
Homogeneous Transformations
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408529;
&#3627409358;
=?
&#3627408487;
??????
&#3627408486;
??????
&#3627408485;
??????
A long sequence of rigid motions, find &#3627408529;
&#3627409358;
.
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627408527;
&#3627409358;
&#3627408529;
&#3627408527;
+&#3627408517;
&#3627408527;
&#3627409358;

10/17/2017
Homogeneous Transformations
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408529;
&#3627409358;
=?
&#3627408487;
??????
&#3627408486;
??????
&#3627408485;
??????
A long sequence of rigid motions, find &#3627408529;
&#3627409358;
.
Represent rigid motions in matrix so that
composition of rigid motions can be reduced to
matrix multiplication as was the case for
composition of rotations
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627408527;
&#3627409358;
&#3627408529;
&#3627408527;
+&#3627408517;
&#3627408527;
&#3627409358;

10/17/2017
Homogeneous Transformations
A long sequence of rigid motions, find &#3627408529;
&#3627409358;
.
Represent rigid motions in matrix so that
composition of rigid motions can be reduced to
matrix multiplication as was the case for
composition of rotations
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627408527;
&#3627409358;
&#3627408529;
&#3627408527;
+&#3627408517;
&#3627408527;
&#3627409358;
??????=
&#3627408505;&#3627408517;
;&#3627408517;∈ℝ
&#3627409361;
,&#3627408505;∈&#3627408506;&#3627408502;&#3627409361;

10/17/2017
Homogeneous Transformations
A long sequence of rigid motions, find &#3627408529;
&#3627409358;
.
Represent rigid motions in matrix so that
composition of rigid motions can be reduced to
matrix multiplication as was the case for
composition of rotations
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627408527;
&#3627409358;
&#3627408529;
&#3627408527;
+&#3627408517;
&#3627408527;
&#3627409358;
??????=
&#3627408505;&#3627408517;
&#3627409358;&#3627409359;
;&#3627408517;∈ℝ
&#3627409361;
,&#3627408505;∈&#3627408506;&#3627408502;&#3627409361;
Transformation matrices of the form Hare called homogeneous transformations.
A homogeneous transformation is therefore a matrix representation of a rigid motion.

10/17/2017
Homogeneous Transformations
A long sequence of rigid motions, find &#3627408529;
&#3627409358;
.
Represent rigid motions in matrix so that
composition of rigid motions can be reduced to
matrix multiplication as was the case for
composition of rotations
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627408527;
&#3627409358;
&#3627408529;
&#3627408527;
+&#3627408517;
&#3627408527;
&#3627409358;
??????=
&#3627408505;&#3627408517;
&#3627409358;&#3627409359;
;&#3627408517;∈ℝ
&#3627409361;
,&#3627408505;∈&#3627408506;&#3627408502;&#3627409361;
??????
−&#3627409359;
=
&#3627408505;
&#3627408507;
−&#3627408505;
&#3627408507;
&#3627408517;
&#3627409358;&#3627409359;
The inverse transformation ??????
−&#3627409359;
is given by

10/17/2017
Ex. :Two Rigid Motions
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408505;
&#3627409360;
&#3627409358;
The orientation transformations can simply be multiplied together.
&#3627408517;
&#3627409360;
&#3627409358;
The translation transformation is the sum of:
•&#3627408517;
&#3627409359;
&#3627409358;
the vector from the origin &#3627408476;
0to the origin &#3627408476;
1expressed with respect to &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
•&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
the vector from &#3627408476;
1to &#3627408476;
2expressed in the orientation of the coordinate system
&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408529;
&#3627409360;
+&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
??????=
&#3627408505;&#3627408517;
&#3627409358;&#3627409359;
;&#3627408517;∈ℝ
&#3627409361;
,&#3627408505;∈&#3627408506;&#3627408502;&#3627409361;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409359;
&#3627409358;
&#3627409358;&#3627409359;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408517;
&#3627409360;
&#3627409359;
&#3627409358;&#3627409359;
=
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
0 1

10/17/2017
Ex. :Two Rigid Motions
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408505;
&#3627409360;
&#3627409358;
The orientation transformations can simply be multiplied together.
&#3627408517;
&#3627409360;
&#3627409358;
The translation transformation is the sum of:
•&#3627408517;
&#3627409359;
&#3627409358;
the vector from the origin &#3627408476;
0to the origin &#3627408476;
1expressed with respect to &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
•&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
the vector from &#3627408476;
1to &#3627408476;
2expressed in the orientation of the coordinate system
&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408529;
&#3627409360;
+&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
??????=
&#3627408505;&#3627408517;
&#3627409358;&#3627409359;
;&#3627408517;∈ℝ
&#3627409361;
,&#3627408505;∈&#3627408506;&#3627408502;&#3627409361;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409359;
&#3627409358;
&#3627409358;&#3627409359;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408517;
&#3627409360;
&#3627409359;
&#3627409358;&#3627409359;
=
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
0 1

10/17/2017
Ex. :Two Rigid Motions
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408505;
&#3627409360;
&#3627409358;
The orientation transformations can simply be multiplied together.
&#3627408517;
&#3627409360;
&#3627409358;
The translation transformation is the sum of:
•&#3627408517;
&#3627409359;
&#3627409358;
the vector from the origin &#3627408476;
0to the origin &#3627408476;
1expressed with respect to &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
•&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
the vector from &#3627408476;
1to &#3627408476;
2expressed in the orientation of the coordinate system
&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408529;
&#3627409360;
+&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
??????=
&#3627408505;&#3627408517;
&#3627409358;&#3627409359;
;&#3627408517;∈ℝ
&#3627409361;
,&#3627408505;∈&#3627408506;&#3627408502;&#3627409361;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409359;
&#3627409358;
&#3627409358;&#3627409359;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408517;
&#3627409360;
&#3627409359;
&#3627409358;&#3627409359;
=
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
0 1

10/17/2017
Ex. :Two Rigid Motions
&#3627408485;
0
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408505;
&#3627409360;
&#3627409358;
The orientation transformations can simply be multiplied together.
&#3627408517;
&#3627409360;
&#3627409358;
The translation transformation is the sum of:
•&#3627408517;
&#3627409359;
&#3627409358;
the vector from the origin &#3627408476;
0to the origin &#3627408476;
1expressed with respect to &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
•&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
the vector from &#3627408476;
1to &#3627408476;
2expressed in the orientation of the coordinate system
&#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;.
&#3627408529;
&#3627409358;
=&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408529;
&#3627409360;
+&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
??????=
&#3627408505;&#3627408517;
&#3627409358;&#3627409359;
;&#3627408517;∈ℝ
&#3627409361;
,&#3627408505;∈&#3627408506;&#3627408502;&#3627409361;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409359;
&#3627409358;
&#3627409358;&#3627409359;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408517;
&#3627409360;
&#3627409359;
&#3627409358;&#3627409359;
=
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408505;
&#3627409360;
&#3627409359;
&#3627408505;
&#3627409359;
&#3627409358;
&#3627408517;
&#3627409360;
&#3627409359;
+&#3627408517;
&#3627409359;
&#3627409358;
0 1
We must augment the vectors &#3627408529;
&#3627409358;
,&#3627408529;
&#3627409359;
and &#3627408529;
&#3627409360;
by the addition
of a fourth component of 1:
&#3627408503;
&#3627409358;
=
&#3627408529;
&#3627409358;
1
, &#3627408503;
&#3627409359;
=
&#3627408529;
&#3627409359;
1
, &#3627408503;
&#3627409360;
=
&#3627408529;
&#3627409360;
1

10/17/2017
Homogeneous Transformations
&#3627408503;
&#3627409358;
=??????
&#3627409359;
&#3627409358;
&#3627408503;
&#3627409359;
&#3627408503;
&#3627409358;
=??????
&#3627409360;
&#3627409358;
&#3627408503;
&#3627409360;
…..
&#3627408503;
&#3627409358;
=??????
&#3627408527;
&#3627409358;
&#3627408503;
&#3627408527;
&#3627408486;
0
&#3627408487;
0
&#3627408486;
1
&#3627408485;
1
&#3627408487;
1
&#3627408529;
&#3627408487;
2
&#3627408486;
2
&#3627408485;
2
&#3627408487;
??????
&#3627408486;
??????
&#3627408485;
??????
&#3627408503;
&#3627409358;
=
&#3627408529;
&#3627409358;
1

10/17/2017
Basic Homogeneous Transformations
z

10/17/2017
Homogeneous Transformations
??????
1
0
=
&#3627408475;&#3627408485;&#3627408480;&#3627408485;
&#3627408475;&#3627408486;&#3627408480;&#3627408486;
??????&#3627408485;&#3627408465;&#3627408485;
??????&#3627408486;&#3627408465;&#3627408486;
&#3627408475;&#3627408487;&#3627408480;&#3627408487;
00
??????&#3627408487;&#3627408465;&#3627408487;
01
=
&#3627408475;&#3627408480;
00
??????&#3627408465;
01
&#3627408527;is a vector representing the direction of &#3627408537;
&#3627409359;in the &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;system
&#3627408532;is a vector representing the direction of &#3627408538;
&#3627409359;in the &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;system
&#3627408514;is a vector representing the direction of &#3627408539;
&#3627409359;in the &#3627408528;
&#3627409358;&#3627408537;
&#3627409358;&#3627408538;
&#3627409358;&#3627408539;
&#3627409358;system

10/17/2017
Composition Rule For Homogeneous
Transformations
Given a homogeneous transformation ??????
&#3627409359;
&#3627409358;
relating two frames, if a second rigid
motion, represented by ??????is performed relative to the current frame, then:
??????
2
0
=??????
1
0
??????
whereas if the second rigid motion is performed relative to the fixed frame, then:
??????
2
0
=????????????
1
0

10/17/2017
Example
Find ??????for the following sequence of
1.a rotation by&#3627409206;about the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
2.a translation of &#3627408515;units along the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
3.a translation of &#3627408517;units along the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;,followed by
4.a rotation by angle ??????about the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;
Transformationwith
respect to the current
frame
??????
&#3627409360;
&#3627409358;
=??????
&#3627409359;
&#3627409358;
??????
Transformationwith
respect to the fixed
frame
??????
&#3627409360;
&#3627409358;
=????????????
&#3627409359;
&#3627409358;
Reminder:

10/17/2017
Example
Find ??????for the following sequence of
1.a rotation by&#3627409206;about the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
2.a translation of &#3627408515;units along the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
3.a translation of &#3627408517;units along the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;,followed by
4.a rotation by angle ??????about the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;
Transformationwith
respect to the current
frame
??????
&#3627409360;
&#3627409358;
=??????
&#3627409359;
&#3627409358;
??????
Transformationwith
respect to the fixed
frame
??????
&#3627409360;
&#3627409358;
=????????????
&#3627409359;
&#3627409358;
Reminder:

10/17/2017
Example
Find ??????for the following sequence of
1.a rotation by&#3627409206;about the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
2.a translation of &#3627408515;units along the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
3.a translation of &#3627408517;units along the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;,followed by
4.a rotation by angle ??????about the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;
Transformationwith
respect to the current
frame
??????
&#3627409360;
&#3627409358;
=??????
&#3627409359;
&#3627409358;
??????
Transformationwith
respect to the fixed
frame
??????
&#3627409360;
&#3627409358;
=????????????
&#3627409359;
&#3627409358;
Reminder:

10/17/2017
Example
Find ??????for the following sequence of
1.a rotation by&#3627409206;about the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
2.a translation of &#3627408515;units along the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
3.a translation of &#3627408517;units along the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;,followed by
4.a rotation by angle ??????about the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;
Transformationwith
respect to the current
frame
??????
&#3627409360;
&#3627409358;
=??????
&#3627409359;
&#3627409358;
??????
Transformationwith
respect to the fixed
frame
??????
&#3627409360;
&#3627409358;
=????????????
&#3627409359;
&#3627409358;
Reminder:

10/17/2017
Example
Find ??????for the following sequence of
1.a rotation by&#3627409206;about the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
2.a translation of &#3627408515;units along the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
3.a translation of &#3627408517;units along the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;,followed by
4.a rotation by angle ??????about the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;
Transformationwith
respect to the current
frame
??????
&#3627409360;
&#3627409358;
=??????
&#3627409359;
&#3627409358;
??????
Transformationwith
respect to the fixed
frame
??????
&#3627409360;
&#3627409358;
=????????????
&#3627409359;
&#3627409358;
Reminder:

10/17/2017
Example
Find ??????for the following sequence of
1.a rotation by&#3627409206;about the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
2.a translation of &#3627408515;units along the current &#3627408537;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;, followed by
3.a translation of &#3627408517;units along the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;,followed by
4.a rotation by angle ??????about the current &#3627408539;−&#3627408514;&#3627408537;&#3627408522;&#3627408532;
Transformationwith
respect to the current
frame
??????
&#3627409360;
&#3627409358;
=??????
&#3627409359;
&#3627409358;
??????
Transformationwith
respect to the fixed
frame
??????
&#3627409360;
&#3627409358;
=????????????
&#3627409359;
&#3627409358;
Reminder:

10/17/2017
Example
Find the homogeneous transformations ??????
&#3627409359;
&#3627409358;
, ??????
&#3627409360;
&#3627409358;
, ??????
&#3627409360;
&#3627409359;
representing the transformations among the three frames
Shown. Show that ??????
&#3627409360;
&#3627409358;
=??????
&#3627409359;
&#3627409358;
??????
&#3627409360;
&#3627409359;
.
Tags