This includes the derivation of partition function and its relation with different thermodynamic parameters
Size: 501.34 KB
Language: en
Added: Mar 20, 2019
Slides: 8 pages
Slide Content
The rotational energy for a single molecule is then
given by
??????
??????=
ℎ
2
8�
2
�
��+1……..1
Where I is moment of inertia of diatomic molecule
J= rotational quantum number (J=0,1,2,3…..)
??????
??????=�??????� ????????????+?????? ………..(2)
�ℎ??????�??????,�=
ℎ
8�
2
��
Rotational partition function for single molecule is given as
�
??????= ??????
????????????��
−????????????
????????????
∞
�<0 …….(3)
Since, (2J+1) Eigen states ≅(2�+1)
∴�
??????= (2�+1)??????��
;�ℎ� ��:1
�??????
∞
�<0
……….4
Ignoring the nuclear spin term
Rotational partition function is expressed as
�
??????= (2�+1)??????��
;??????��:1
……..5
∞
�<0
Where, = Bhc/KT
Equation (5) can be solved by Euler-Maclaurin formula
�
??????=
1
�
(1+
�
3
+
�
2
15
+
4�
3
315
+⋯……)
is very small, i.e <0.05 then,
�
??????=
1
�
=
8π
2
IKT
ℎ
2
For the molecule having some symmetry, symmetry number is
introduced,
�
??????=
8π
2
IKT
ℎ
2
Hetero nuclear diatomic()= 1
Homo nuclear diatomic()=2
Simple symmetrical (CO
2), S
2()= 2
Asymmetric triatomic HOD()= 1
Benzene ()= 6
Chair form cyclohexane()=12
Or,
????????????????????????
????????????
??????
=
1
??????
×??????
Substituting this rotational energy is found to be
??????
??????=��
2
×
1
�
×??????
E
r= NKT
E
r= nRT
�
??????=
??????
??????�
��
2
×
1
�
×??????
�
??????=??????�
=??????�
Similarly,
entropy, free energy and enthalpy is related as
∴�
??????=??????�[1+????????????
8π
2
IKT
ℎ
2
]
∴??????
??????=−??????��????????????
8π
2
IKT
ℎ
2
H
r= nRT
Q. Calculate the rotational partition function for H
2molecule
at 0°C given that K= 1.38X10
-16
erg deg
-1
, h= 6.624X10
-
27
ergsec, =2 and I= 0.459X10
-40
g cm
2
Solution:
�
??????=
8π
2
IKT
ℎ
2