Rules of Integration Exponential and Trigonometric Function
... finding an Integral is the reverse  of finding a Derivative. (So you should really know about Derivatives  ) Like here: Example: What is an integral of 2x? We know that the derivative of x 2  is 2x ... ... so an integral of 2x is x 2
Rules of Integration in Exponential Function 1. 2. 3.
Remember the three General rules for Integration 1. 2. 3.
Examples: Integrate 2. Integrate .
3. Integrate u-substitution u = -x du = -1 dx -1 du = dx
Example: Integrate
Example: Integrate
Examples: Integrate
Examples: Integrate u-substitution u = 2x+3 du = 2 dx (1/2) du = dx
Rules of Integration in Trigonometric Function
Trigonometric Functions A. B. C. D. C . D . E. F . G. H. I.
Rules of Differentiation
Indefinite Integrals
Indefinite integrals result from trigonometric identities and u-substitution
Examples A. Integrate u-substitution u = 3x du = 3dx (1/3) du = dx Recall
B. Integrate Examples u-substitution u = 5x du = 5dx (1/5) du = dx Recall
C. Integrate Examples u-substitution u = 4x du = 4dx (1/4) du = dx Recall
D. Integrate Examples
Trigonometric Functions A. B. C. D. C . D . E. F . G. H. I.
D. Integrate Examples
Indefinite Integrals
D. Integrate Examples u-substitution u = sin x du = cos x dx
Rules of Differentiation
D. Integrate Examples u-substitution u = sin x du = cos x dx
E. Integrate Examples
Trigonometric Functions A. B. C. D. C . D . E. F . G. H. I.
E. Integrate Examples u-substitution u = 10x du = 10dx (1/10)du = dx
F . Integrate Example u-substitution u = sin x du = cos dx Recall
INTEGRATE THE FOLLOWING 1. u-substitution u-substitution