SAR Imagery Analysis for Defence and Security

ESRI 2,923 views 40 slides Nov 17, 2011
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

Presentation on Esri European User Conference by Daniel Carrasco, Rosana Romero and Ainhoa Mendizábal from Indra.


Slide Content

ESRI Conference

SAR Imagery Analysis for
Defence and Security

Daniel Carrasco
Ros: Romero

00 About Indra

01 Introduction

02 Imagery Exploitation Approach for Defence & Security
03 GMOSAIC project

3
3
2
8
$
3
&
=
3
E
E
=
E
=
E
=
E
3

er IT company in Spain and a
multinational in Europe and Latam

Own solutions and technology

Differential business model based on Innovation

3
z
$
E
3
E
=
&
5
E:
=
E
El
É
E
E
5
3

Among the 3 largest European IT services companies by market cap

Transportation & Traffic
gy & Industry

— Telecom 8 Media

1

D
[=]
e
a
à

Command Control & Comms.
Aerial Defence

Electronic Warfare
Simulation

Homeland Security

(...)

Space

SAR Imagery Analysis for Defence and Security

18 years experience in
satellite ground
segment

* Helios | & Il

= Pleiades

= SMOS

= Ingenio & Paz
= METOP
Etc

High level data
processing and

dissemination systems

= Civilian and Defence
systems

= Spatial Data Infrastructures
= MoD exploitation systems
= SAR data processing

= Urban geoinformation
management

Remote Sensing
applications and
services

= GMES
"R&D
= Training

= High volume cartographic
production

™ Imagery supply

= Advanced geoinformation
" Certified developer for
ERDAS, ESRI, Intergraph

™ Consultancy and market
studies

7] SAR Imagery Analysis for Defence and Security

BARCELONA
VISTA DESDE EL TIBIDABO...

EN UN DIA DE NIEBLA

Barcelona as seen from
Tibidabo in a foggy day

E Barcelona de Noche

Barcelona at night

$
8
5
8
&
2
E
<
=
E
E
É
E
<
ö

Aunoss pue aouejeg 40) sisAieuy Aeeuu uvs [E

3
8
g
3
2
E
Bat

es: you program, you get it!

r + Day and Night

s: it is hard to use! (radically distinct from optical)
ecialised training

Is present distinct spectral and radiometric characteristics from optical
fa, So a different analysis is required. We see different things!

Cannot replace optical imagery photointerpretation
performance, but it can be the only choice!

Caveat: Wrong expectations, prejudices and lack of training or
processing infrastructure can make optical analysts reluctant to
use SAR imagery and yield project failure. A new mindset is
needed

3
2
$
3
5
2
£
E
3
=
A
É
=
5
>

Crisis situations,
where more frequent
acquisitions are
needed.

Acomplement to
optical imagery.

Best performance
when the area is
previously known
and we focus on
changes.

Only in exceptional
cases, when optical
data is not available,
the analysis of an
area can be based

only on SAR images.

One image is used
for target detection,
recognition, and
identification.

Pair of images is
used for change
detection. Can use
radar phase!

Set of images are
used for temporal

analysis of changes.

SAR Imagery Analysis for Defence and Security

SLC/detected

3
2
E
3
&
=
H
E
=
¿
E
É
E
E
5

basic products
H products (standard image)

™ with own DEM
™ at our facilities

Change detection basic products
Automatic processing

Time series for continuous surveillance

Combined Amplitude/Phase advanced products
™ Additional information without counterpart in optical imagery

SAR Imagery Analysis for Defence and Security

TSX HS Image (<1 m)

Floating dock

X SL Image (>1 m)

2003-04

SAR Imagery Ahalys

Vessel is removed in
Date3

Vessel is removed in
Date3

Vessel appears in Date3

Mobile pontoon is moved
between Date2 and Date3 and
the crane is removed in Date3

3
3
2
8
E
3
E
=
pl
2
E
=
E
7
É
=
E
3

Image of Date2
i Gy B: Image of Date3

] SAR Super Resolution Image Viewer

20031014.ern4
20031118.6rm
20040302.em4
Booinstters2
20011102.0m
20050111.0m4
20050426.ema
20050913.¢rs2
20050913.e1m
1018.61
20051122:emmá
05112152

0051227.0M
20060131.ers2
20060131.erm4
20060307.01m

) SAR Super Resolution Image Viewer

20031014.ern4
20051118.
20040302.em4
200405118152
boo41102.ema
20050111.6m4
20050426.ema
20050913.¢rs2
20050913.em4
51018.0má
20051122:0mm4
200511220152
20051227 21m
20060131.er52
20000131.cm
0060307...

] SAR Super Resolution Image Viewer

20031014.ern4
20031119.0ma
20040302.em4
200405118152
20041102.ema
oosa114.0mA
20050426.ema
20050913.¢rs2
20050913.em4
51018.0má
20051122:0mm4
200511220152
20051227 21m
20060131.er52
20000131.cm
0060307...

] SAR Super Resolution Image Viewer

20031014.emn4
20031119.61n4
20040302.cımi
20040511.ers2
20081102.erm4
20050111.0m4
[2o050426.ema
20050913:0152
20050913.em4
51018.0má
20051122:0mm4
200511220152
20051227 21m
20060131.er52
20000131.cm
0060307...

20031014.ern4
20031119.61n4

2004110:
20050111.0m4

emi

20060307.01m4

per Resolution Image Viewer

f 44
á 2

| 20031014:emá

F 20051118.

20040302.em

F 20040511.6152
f : 200411026
= à 20050114.

20060131.emá
:0060307.emá

x

] SAR Super Resolution Image Viewer

20031014.emn4
20031119.61n4
20040302.
200405110752
20011102.0mM
20050111.0m4
20050426.ema
20050913.¢rs2
20050913.em4
20051018.ema
20051122.em4
Boos1122.0182
20051227 em
20060131.ers2
20000131.cm
10060307.

] SAR Super Resolution Image Viewer

20031014.ern4
20031119.61n4
20040302.
200405110752
20011102.0mM
20050111.0m4
20050426.ema
20050913.¢rs2
20050913.em4
2005101%.em4
20051122.emá
20051122192
oos 227.014
20060131.ers2
20060131.erm
20060307.01m

] SAR Super Resolution Image Viewer

20031014.emn4
20031119.61n4
200403020
20040511.ers2
004110204
20050111.0m4
20050426.ema

20050913.¢rs2
20050913.em4
51018.
20051122.em4

200511220152
20051227.ema

pooon131.ers2
20060131.e1m
0060307.emá

] SAR Super Resolution Image Viewer

20031014.emn4
20031119.61n4
200403020
20040511.ers2
004110204
20050111.0m4
20050426.ema
20050913.¢rs2
20050913.e1m
1018.61
20051122:emmá
20051122.rs2
20051227.em4
20060131.ers2
oosons1.em
20060307.

CSK SL Image (<1 m) SSI CSK SL Image (<1 m)

May 2009

po

Summer 2009 (5 images)

SSI CSK HS S Image (<1 m) (5 Images)

3
3
2
8
E
3
E
=
pl
2
E
=
E
7
E
=
E
3

: Superresolution images ease and improve the
lysis wrt

eduction without spatial resolution loss.

der definition.

ic features and textures: forest, trees,...

ures.

Drawbacks:
"Higher cost: at least 3-4 images are needed to obtain an
acceptable SSI image.
"Choice of the dates is very important for a proper interpretation
of the changes.

3
3
2
8
$
3
&
=
s
E
E
=
E
7
E
=
E
3

CSK HS Images (<1 m)

Red: Removed features
: New features

Features are
present in both images but
they have been moved

Blue: Non changed
features with low
backscattering

White: Non nged
features with high
backscattering

3
3
2
8
$
3
&
=
s
E
E
=
E
7
E
=
E
3

: elementos que desaparecen
Verde: elementos que aparecen
: elementos que han cambiado entre las dos fechas
Azul: elementos que no cambian con reflectividad baja
Blanco: elementos que no cambian con reflectividad alta

3
z
$
E
3
E
=
&
5
E
=
3
E
E
5
E

E
3
2
$
E
3
E
2
&
5
E:
=
E
El
É
E
E
5
5

Indra SAR tool for the exploitation of SAR products & Imagery Analysis. Plug-in for
standard COTS for Image Processing

ind pilot services for the provision of geo- spatial
pport of EU external actions for security related

Gmesaic

Service Casa #5
Nuclear and Non Proliferation
Monitoring

intelligence and early
warning and Crisis
Management Operations.

$
8
5
à
&
2
E
<
=
A
3
É
x
ES
ö

Daniel Carrasco
Rosana Romero
Ainhoa Mendizabal

Remote Sensing Systems
Indra Espacio

Mar Egeo, 4.
Polígono Industrial n° 1

28830 San Fernando de Henares
Madrid España

T +34 91 626 90 00

F +34 91 626 88 90
www.indra.es