sdf s dfs efe fsef ewfwe fwef weNoAI.pdf

PradipDolai 50 views 6 slides Sep 19, 2024
Slide 1
Slide 1 of 6
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6

About This Presentation

dfhr h


Slide Content

SMART INDIA HACKATHON 2024
•ProblemStatementID–
1567
•ProblemStatementTitle-
GreyWaterManagement(GWM)
•Theme-
Clean&GreenTechnology
•PSCategory-
Hardware
•TeamID-
•TeamName-
LunaBytes

2
Luna Bytes
Problem Statement
Greywatermanagementcourseenablesonetousewaterinasustainablewaybyfollowing
theprincipleofReduction,Reuse,andRecharge,whichinturnhelpstoconservefreshwater
resourcesanddecreasestressonthetreatmentplants.However,maintenanceofqualityof
greywaterforreusecouldposeanenormousproblemduetopossiblebacterialand
microbiologicalcontamination.Thisaspectisofgraveconcernwhengreywaterisusedfor
non-potablepurposessuchasirrigationortoiletflushingbecausecontaminationcanleadto
healthconcerns.However,thewaterqualitytestcouldonlybeprovidedbyadvancedtesting
kits,whichareusuallyquiteexpensiveandoutofreachforthoselivingespeciallyinruralor
lessprivilegedareas.Commonly,thewaterkitsrequiretechnicalexpertiseandlaboratory
facilities,sotheycannotbeusedforpracticalapplicationsatthehouseholdlevel.Therefore,
ruralcommunitiesstrugglewithsafelyreusinggreywater,increasingthechancesofreusing
pollutedwater.Inthiscontext,low-cost,user-friendlygreywatertestingkitsforhomeuseare
urgentlyneeded.Thesekitsaredesignedforeaseofuse,providinginstantaneousinformation
onwaterqualitywithoutrequiringspecialistknowledgeorexperience.Theyshouldenable
individualsandcommunitiestospotpollutantslikebacteriaandtoxicchemicalstoconfirm
thatgreywaterissafeforreuse.Additionally,theymustbedevelopedaccordingtolaboratory
standardsinordertoensureaccuracyandreliabilitybutatanaffordablecosttoensurewide
applicabilityinruralsettings.Byfacilitatingthecapacityforuserstoassesswaterqualityin
situ,thesekitswouldenhancethesafereuseofgreywater,therebymitigatinghealthhazards
andencouragingsustainablepracticesinwatermanagement.Inessence,economicaltesting
optionsforgreywatermanagementwouldenhancepublichealthwithinruralregionswhile
simultaneouslybolsteringongoingeffortsinenvironmentalconservation.Thesekitswould
empowerhouseholdsandcommunitiestoefficientlyconservewater,therebyadvancingwider
sustainabilityobjectiveswhilesafeguardingbothnaturalresourcesandpublichealth.In
summary,cost-effectiveandaccessiblegreywatertestingkitshavethepotentialtotransform
greywatermanagementbyenablingruralcommunitiestoimplementsafeandsustainable
practicesforwaterreuse.
Aninnovativecompact,IoT-enabledgreywatertreatmentsystemthatintegrates
advancedfiltrationtechnologiestoensureseamless,safe,andecologicallyfriendly
watermanagementinahouseholdorcommunitycontext.
OriginofWastewater:Thecollectionprocessstartswiththegatheringof
wastewaterfromdiversifiedoriginates,includingthekitchen,bathroom,and
precipitation.
WaterContainer:Thisisthecontainerthatholdsthecollectedwater.Thecontainer
ofwaterissetwithothersensorstodetectthetypeofqualityinthewater.These
sensorsincludeturbidity,pH,temperature,nutrient,andpressuresensors.
DataAcquisitionandProcessing:Allthedataacquiredthroughsensorsare
transmittedtoasystemusingsoftwareprogramslikeReact/Flutter,Python/Node.js,
andFirebase.
WaterTreatment:Basedonthedatacollectedbythesensors,wateristreated
throughdifferentstagessuchascoagulation,sedimentation,filtration,and
disinfection.
FreshWaterStorage:Thetreatedwaterisfurtherplacedinacleancontainerand
cleanwaterisdistributedtovariouslocationsforuse.
Idea/ Approach Details:
Idea/Solution:
Bluetooth Module BT04-A
Water
Status App
Arduino Uno
R3
Sensor
Bluetooth
Module BT04-A
Workflow
Water
Input

TECHNICAL APPROACH
3
Low level design:
Approach:
InitialCollectionandSeparation:
GreywaterentersContainer1forprimary
filtration,wherelargedebrislikehairanddirtareremovedbyscreens.A
shakingsystemhelpssettleparticles,andthewasteisdirectedtoadisposal
pipe.ThepartiallyfilteredwaterthenflowstoContainer2forfurther
processing.
SecondaryTreatmentinContainer2:
InContainer2,ventilationpromotes
bacterialbreakdown,whilesensorsmonitorpressureandcontaminationlevels,
followedbyoptionalchemicaltreatment.
DetectionandAnalysis:
Container3usesIoT-enabledsensorstoanalyze
waterforcontaminants,sendingreal-timedatatoamobileappandweb
interface.
FinalTreatmentandDischarge:
Aftersecondaryclarifiersremovesludge,
treatedgreywateriseitherreused(forirrigation,etc.)orsentfortertiary
treatmentifnecessary.
AirPressureandQualityControl:
Theaircompressorsystemmaintains
optimalpressureinpipes,ensuringefficientfiltration,aeration,andconsistent
wasteseparationforeffectivetreatment.
Real-TimeMonitoringandAlerts:
TheIoT-enabledsystemmonitors
mechanicalparts,ensuresongoingreliability,andallowsreal-timewaterquality
trackingviamobile/webapps.
FinalDischargeandReuse:
Oncetreatedandtested,greywatercanbe
reusedforirrigation,toiletflushing,orvehiclewashing,promotingwater
conservation.
Technology stack here:
Hardware Components:
pHsensor:
pHsensormeasureshowacidicorbasicaliquid
ishelpingtobalancewaterandsoilforvarioususes.
TurbiditySensor:
Turbiditysensorshineslightinaliquidand
checkshowmuchthelightisblockedorscatteredtoshowclarity.
DissolvedOxygenSensor:
Ingraywatersystemsadissolved
oxygensensorensuresenoughoxygenforbacteriatocleanthe
waterproperlyforreuse.
NutrientSensor:
Nutrientsensorchecksfortoomanynutrients
ingraywatertostopalgaeandkeepthewatercleanforreuse
.
TemperatureSensor:T
emperaturesensorcheckswater
temperatureforpropertreatmentandreuse.
PressureChecker:
Pressuresensorcheckswaterforceand
usedtomonitorleaksinpipes.
Project to Product:
Demo Device
75%oftheproductis
completed.
Furtherbuildisonprogress.
Testingandvalidationarenext
tobeundergone.
Ourvisionistousegreywater
testingtechnologyforsafe
reuse.
Domestic Diagram
Luna Bytes

FEASIBILITY AND VIABILITY
4
Concept Development
Implementation
Roll-Out
Product Feasibility Product Delivery
Smart
water
Feasibility:
Affordable
device for real-
time greywater
treatment.
pH, turbidity,
nutrient levels,
and dissolved
oxygen
Cost-effective
way to ensure
safe water
reuse.
Prototype, test,
and refine
greywater
testing devices.
Data analysis
and user
interaction,
such as
smartphone
apps or control
panels
Deploy the
greywater
testing devices
in selected
households,
farms, or
communities.
Provide
training
sessions and
support
materials.
Larger market,
including rural
areas and small
communities.
Regularly
evaluate the
effectiveness
of the devices
in real-world
applications,
gathering
feedback
Luna Bytes
Case Study:
SafetythroughSmartSensors:Specialsensorsmeasure
bacteriaandmineralsinwater,sendingthedatatoa
phoneappsouserscaneasilymonitorwaterquality.
WastewaterReduction:Greywaterreusehelpsreduce
theamountofwastewaterdischargedintosewage
systems,thereforepreventingoverloadsduetohigh
usage.
CostSavings:Reusinggreywater,peoplecanlowertheir
waterbillsbecausetheyuselesscleanwaterfordaily
activitieslikewashing.
ImprovedAgriculture:Treatedgreywatercanwater
plantsandgardens,thuspreservingfreshwaterand
allowingforsustainablefarming.
EnergyEfficiency:Treatinggreywatertakeslessenergy
thanprocessingsewage,soithelpslowertheoverall
energyusedforwatertreatment.
Uses:
Dependencies:
DataTransmission:Thesystemshouldbeableto
sendthedatatomobiledevicesandtheinternet
formonitoringwaterquality.
EfficientShakingMechanism:Thecontainerneedsa
reliableshakingmechanismtohelpsettlemore
waste.
PressureMonitoring:Tocheckpipepressures,an
accurateaircompressorsystemisrequired.
.
ChemicalTreatment:
Chemicaltreatmentapplies
reactionstoneutralizecontaminantsandpathogensto
makethewatersafe.Cl2+SO2+2H2O→2Cl−+SO2+4H+
Viability:
InitialWasteRemoval:
Thetankremovesbigger-size
materialandabigfractionofwastefromgreywater,thus
makingitcleanerandreadyforfurtherstagesoftreatment.
AdvancedCleaning:
Thenextcontainershakesthewater
toremoveadditionalwaste,ensuringit’scleanerbefore
furthertreatment.
MonitoringandTesting:
Sensorsdetectmineralsand
contaminants,sendingthisinformationtoourphoneand
web,makingmonitoringeasy.
AffordableTestingKits:
Affordable,user-friendlytesting
kitswillhelppeoplecheckwaterqualityathome,making
thesystempracticalandaccessible.
Total Cost:
PRICEQTYCOMPONENTS
2991ESP8266
1pH Sensor
3001Nephelometric Sensor
1Temperature Sensor
1601Dissolved Oxygen Sensor
112-Others
Estimated Cost
XXXX/-

IMPACT AND BENEFITS
5
Luna Bytes
Potential Impact:
ImprovedWaterQuality:
Thisprojectimprovesthequalityofgreywaterbyfilteringand
chemicaltreatment,henceminimizingrisksofpollution.
Cost-EffectiveSolution:
Low-costtestingkitsandtreatmentsystemsmakeitfeasiblefor
ruralcommunitiestomanagewaterresourcessafelywithoutacquiringhighcosts
SustainableWaterUse:
Reusinggreywaterinirrigationandotherpurposesinstillsthe
valueofmanagingwaterconsumptioninasustainablemanner,hencereducingdemandfor
freshwater.
EnvironmentalProtection:
Thereduceddependanceonfreshwaterandbetter
greywatermanagementwillacttopromoteenvironmentalconservationandresource
sustainability..
Benefits of the solution :
SocialBenefits:
•ImprovedPublicHealthReducestherisksofwaterbornediseasesbyensuringsafer
greywaterreuse,protectingcommunityhealth.
•EnhancedAccesstoCleanWater:Offersruralpopulationsaneffectivemethodforthe
managementandrecyclingofgreywater,therebyenhancingwateravailability.
EconomicBenefits:
•CostCutting:Economicalkitsfortestingandtreatmentsystemsreducethedependenceon
expensivewaterpurificationmethodssothathouseholdsandcommunitieswillspendless
money.
•ResourceEfficiency:Efficientgreywaterreuseminimizestheneedforfreshwater,saving
moneyonwatersupplyandtreatment.
EnvironmentalBenefits:
•SustainableUseofWater:Itpromotesthereuseofgreywater,whichreducesdependence
onfreshwaterandsupportsunsustainableuseofwater.
•ReducedPollution:Propertreatmentofgreywaterreducespollutionbyensuring
contaminantsareremovedbeforewaterisreusedorreturnedtotheenvironment.
RESEARCH AND REFERENCES
Abdel-ShafyHI,Al-SulaimanAM,MansourMS.Anaerobic/aerobictreatmentofgreywaterviaUASBand
MBRforunrestrictedreuse.WaterScienceandTechnology.2015;71:630–637.
doi:10.2166/wst.2014.504.[PubMed][CrossRef][GoogleScholar]
AbedinSB,RakibZB.GenerationandqualityanalysisofgreywateratDhakaCity.Environmental
Research,Engineering and Management. 2013;64:29–41.
doi:10.5755/j01.erem.64.2.3992.[CrossRef][GoogleScholar]
AdendorffJ,StimieC(2005)Foodfromusedwater—makingthepreviouslyimpossiblehappen.South
African Research Commission
(WRC).http://journals.co.za/docserver/fulltext/waterb/4/1/waterb_v4_n1_a4.pdf?expires=1493811214&
id=id&accname=guest&checksum=510AA057CDF6FD48ADB3BCB40047FFDC.Accessed2ndApril2017.
AlderliesteMC,LangeveldJG.WastewaterplanninginDjenne,Mali.Apilotprojectforthelocalinfiltration
ofdomesticwastewater.WaterScienceandTechnology.2005;51:57–64.
doi:10.2166/wst.2005.0032.[PubMed][CrossRef][GoogleScholar]
BoyjooY,PareekVK,AngM.Areviewof greywatercharacteristicsandtreatmentprocesses.Water
ScienceandTechnology.2013;67:1403–1424.doi:10.2166/wst.2013.675.[PubMed][CrossRef][Google
Scholar]
Busser,S,Pham,T.N,Morel,A,Nguyen,V.A(2006)Characterisitcsandquantitiesofdomesticwastewater
inurbanandperi-urbanhouseholdsinHanoi. http://ir.library.osaka-
u.ac.jp/dspace/bitstream/11094/13204/1/arfyjsps2006_395.pdf.Accessed19thMarch2017.
DallasS,HoG.Subsurfaceflowreedbedsusingalternativemediaforthetreatmentofdomesticgreywater
inMonteverdeCostaRica,CentralAmerica.WaterScienceandTechnology.2005;52:119–128.doi:
10.2166/wst.2005.0358.[PubMed][CrossRef][GoogleScholar]
deAguirdoCoutoE,CalijuriML,AssemanyPP,daFonsecaSantiagoA,deCastroCarvalhoI.Greywater
productioninairports:qualitativeandquantitativeassessmentresources.ConservationandRecycling.
2013;77:44–51.doi:10.1016/j.resconrec.2013.05.004.[CrossRef][GoogleScholar]
Dwumfour-AsareB,AdanteyP,NyarkoKB,Appiah-EffahE.Greywatercharacterizationandhandling
practicesamongurbanhouseholdsinGhana:thecaseofthreecommunitiesinKumasiMetropolis.Water
ScienceandTechnology.2017;76:813–822.doi:10.2166/wst.2017.229.[PubMed][CrossRef][Google
Scholar]
Chuck,H.(2004)Composting toilet andgreywatersystem.
http://www.aviusa.org/projects_usapavilion_newsletter_may_aug_2006.pdf.Accessed12April2017.

6
Team Members Details
Team Leader Name: Himanshu Kumar
B-Tech CSE IV
Team Member 1 Name: Anindit Ghosh
B-Tech CSE IV
Team Member 2 Name:Pradip Dolai
B-Tech CSE IV
Team Member 3 Name: Umesh Kumar Mahato
B-Tech CSE IV
Team Member 4 Name:Kaithireddy Abhishek
B-Tech CSE IV
Team Member 5 Name:Afrina Akter
B-Tech Bio-Tech IV
Team Mentor 1 Name: Dr. Ravikumar S
Category: Academic Expertise : Internet of Things (IoT) Domain Experience : 4 Years
Tags