Sensor Networks Introduction and Architecture

3,635 views 100 slides Feb 21, 2021
Slide 1
Slide 1 of 100
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100

About This Presentation

Details of fundamentals of Sensor networks and its applications


Slide Content

Unit II
Sensor Networks –
Introduction & Architectures
Dr.S.Periyanayagi
Professor & Head
Ramco Institute of Technology
20.08.2020

Topics
•Challenges for Wireless Sensor Networks
•Enabling Technologies for Wireless Sensor Networks
•WSN application examples
•Single-Node Architecture -Hardware Components
•Energy Consumption of Sensor Nodes
•Network Architecture -Sensor Network Scenarios
•Transceiver Design Considerations
•Optimization Goals and Figures of Merit
2

WSN -Introduction
•AWirelessSensorNetwork(WSN)isawirelessnetwork
consistingofalargenumberofspatiallydistributedsensor
nodes
•verysensitivetotheenvironment
•capableofcommunicationwitheachotherthrough
wirelesschannels
Picture Taken from: https://microcontrollerslab.com/wireless-sensor-networks-wsn-applications/
3

Sensor & Sensor Nodes
•SensorNetworkisaninfrastructurecomprisedofsensing,
computingandcommunicationelementsthatgivethe
abilityofobservingandreactingtoeventsinaspecified
environmenttoanadministrator.
•TheAdministratortypicallyisacivil,governmental,
commercialorindustrialentity.
•Theenvironmentcanbeaphysicalworld,abiological
system,oraninformationtechnologyframework.
4

Contd…
•SensingisaTechniqueusedtogatherinformationabout
physicalobjectorProcess,Includingoccurrenceofthe
event.
•AnObjectperformingsuchasensingtaskiscalleda
sensor.
•Foreg:RemoteSensors
•Thehumanbodyisequippedwithsensorsthatareableto
captureopticalinformationfromtheenvironment
•Acousticinformationsuchassounds(ears)andsmell(Nose)
•Asensorisadevicethattranslatesparametersoreventsin
thephysicalworldintosignalsthatcanbemeasuredand
analyzed.
5

•Asensorisaelectronicdevicethatmeasuresaphysical
quantityandconvertsitintoasignalwhichcanberead
byanobserverorbyaninstrument.
•SensorNode:BasicunitinSensorNetwork
Picture taken from : https://www.researchgate.net/publication/312332362_Application aware _ Energy _
Efficient_Centralized_Clustering_Routing_Protocol_for_Wireless_Sensor_Networks/figures?lo=1
6

Architecture of Sensor Node
7

Goal of a Sensor Node
•Thegoalfromthesensornodeis
•tocollectthedataatregularintervals
•thentransformthedataintoanelectricalsignal
•finallysendthesignaltothesinkorthebasenode
8

Early, wireless sensor networks functioned mainly with two important
application domains namely monitoringand tracking.
9

One Minute Paper
•List few Applications of WSNs –you are familiar with
10

Wireless Sensor Networks
Applications
•Forest fire detection
•Air pollution monitoring
•Water quality monitoring
•Land slide detection
•Automotive application
•Military application
•Animal Habitat Monitoring & Tracking
•Agriculture
•Health Care Monitoring
11

Contd…
•Disaster relief applications
–Sensor nodes are equipped with thermometersand can
determine their own location
–Drop sensor nodes from an aircraft over a wildfire
–Each node measures temperature
–Derive a “temperature map”of the area
•Biodiversity mapping
–Use sensor nodes to observe wildlife
Picture taken from: https://www.slideshare.net/shikhathegreat/ppt-on-low-power-wireless-sensor-network-
5th-sem
12

Forest fire detection
• A network of Sensor Nodes can be installed in a forest to
detect when a fire has started.
• The nodes can be equipped with sensors to measure
temperature, humidity and gases which are produced by
fire in the trees or vegetation.
• If the node detects fire,itsends an alarm message(along
with its location) to the base station
13

Air Quality monitoring
•Traditionalairqualitymonitoringmethods,suchas
buildingairqualitymonitoringstations,aretypically
expensive.
•Thesolutiontotheseisairqualitymonitoringsystem
basedonthetechnologyofwirelesssensornetworks
(WSNs).
•Wirelesssensornetworkshavebeendeployedinseveral
citiestomonitortheconcentrationofdangerousgasesfor
citizens.
14

Water Quality Monitoring
•Waterqualitymonitoringinvolvesanalyzingwater
propertiesindams,rivers,lakes&oceans,aswellas
undergroundwaterreserves.
•Parametersconsideredinclude–temperature,turbidity
andpH
Picture taken from: Paper by JungsuPark et al., ‘Recent Advances in Information and Communications
Technology (ICT) and Sensor Technology for Monitoring Water Quality’
15

Military Surveillance
•Enemy tracking, battlefield surveillance
•Target detection
•Monitoring, tracking and surveillance of borders
•Nuclear, biological and chemical attack detection
Picture taken from: https://www.researchgate.net/figure/WSNs-used-in-Military-
Applications_fig1_4365726
16

Landslidedetection system
•Alandslidedetectionsystemmakesuseofawireless
sensornetworktodetecttheslightmovementsofsoiland
changesinvariousparametersthatmayoccurbeforeor
duringalandslide.
•Throughthedatagathereditmaybepossibletoknowthe
occurrenceoflandslideslongbeforeitactuallyhappens.
17

Eruption
Picture Taken from: https://www.researchgate.net/figure/Monitoring-volcanic-eruptions-with-
a-WSN-24_fig3_230660610
18

Precision Agriculture
Picture Taken from: Article by uferahsafriet al, ‘Precision Agriculture Techniques and
Practices: From Considerations to Applications’
–Bring out fertilizer/pesticides/irrigation only where needed
19

Medical & Health Care
Monitoring
Picture taken from: https://www.slideshare.net/DeeptimanMallick/using-tiny-os-in-
wireless-sensor-network
–Post-operative or intensive care
–Long-term surveillance of chronically ill patients or the elderly
20

•Intelligent buildings (or bridges)
–Reduce energy wastage by proper humidity, ventilation, air
conditioning (HVAC) control
–Needs measurements about room occupancy,
temperature, air flow, …
–Monitor mechanical stress after earthquakes
•Facility management
–Intrusion detection into industrial sites
–Control of leakages in chemical plants, …
•Machine surveillance and preventive maintenance
–Embed sensing/control functions into places no cable has gone
before
–E.g., tire pressure monitoring
21

•Logistics
–Equip goods (parcels, containers) with a sensor node
–Track their whereabouts –total asset management
–Note: passive readout might sufficient –compare RF IDs
•Telematics
–Provide better traffic control by obtaining finer-grained
information about traffic conditions
–Intelligent roadside
–Cars as the sensor nodes
Picture taken from : https://www.semanticscholar.org/paper/Industry%3A-using-dynamic-WSNs-in-
smart-logistics-for-Bijwaard-Kleunen / 377f4ffcece496334f65255263b942f3509bbe7c /figure/0
22

A general work process of WSN
23

How are sensor nodes deployed in their environment?
•Dropped from aircraft ! Random deployment
–Usually uniform random distribution for nodes over finite area
is assumed
–Is that a likely proposition?
•Well planned, fixed ! Regular deployment
–E.g., in preventive maintenance or similar
–Not necessarily geometric structure, but that is often a
convenient assumption
Deployment options for WSN
24

•Mobile sensor nodes
–Can move to compensate for deployment shortcomings
–Can be passively moved around by some external force (wind,
water)
–Can actively seek out “interesting” areas
Maintenanceoptions
•Feasibleand/orpracticaltomaintainsensornodes?
–E.g.,toreplacebatteries?
–Or:unattendedoperation?
–Impossiblebutnotrelevant?Missionlifetimemightbeverysmall
•Energysupply?
–Limitedfrompointofdeployment?
–Someformofrecharging,energyscavengingfromenvironment?
–E.g.,solarcells
25

Assignment
•Explain any one application of WSN (Agriculture,
Medical, Military, Under water, Animal Habitat,
IOT, IIOT etc..) in Detail
–What is WSN?
–Type of Sensor Used
–Application in Detail
–Working
–Refernces
26

Challenges for Wireless Sensor
Networks
21.08.2020

Design Challengesin WSN
•Heterogeneity
–Thedevicesdeployedmaybeofvarioustypesandneedto
collaboratewitheachother.
•DistributedProcessing
–Thealgorithmsneedtobecentralizedastheprocessingis
carriedoutondifferentnodes.
•LowBandwidthCommunication
–Thedatashouldbetransferredefficientlybetweensensors
•LargeScaleCoordination
–Thesensorsneedtocoordinatewitheachothertoproduce
requiredresults.
28

Contd…
•UtilizationofSensors
–Thesensorsshouldbeutilizedinawaysthatproducethe
maximumperformanceanduselessenergy.
•RealTimeComputation
–Thecomputationshouldbedonequicklyasnewdatais
alwaysbeinggenerated.
29

Challenges for WSNs
•Type of service of WSN
–Notsimplymovingbitslikeanothernetwork
–Rather:provideanswers(notjustnumbers)
–Issueslikegeographicscopingarenaturalrequirements,absent
fromothernetworks
•Qualityofservice
–TraditionalQoSmetricsdonotapply
–Still,serviceofWSNmustbe“good”:Rightanswersattheright
time
•Faulttolerance
–Berobustagainstnodefailure(runningoutofenergy,physical
destruction,…)
30

Contd..
•Lifetime
–Thenetworkshouldfulfillitstaskaslongaspossible–
definitiondependsonapplication
–Lifetimeofindividualnodesrelativelyunimportant
–Butoftentreatedequivalently
•Scalability
–Supportlargenumberofnodes
•Widerangeofdensities
–Vastorsmallnumberofnodesperunitarea,very
application-dependent
31

Contd..
•Programmability
–Re-programmingofnodesinthefieldmightbe
necessary,improveflexibility
•Maintainability
–WSNhastoadapttochanges,self-monitoring,adapt
operation
–Incorporatepossibleadditionalresources,e.g.,newly
deployednodes
32

Operational Challenges of Wireless Sensor
Networks
•EnergyEfficiency
•Limitedstorageandcomputation
•Lowbandwidthandhigherrorrates
•Errorsarecommon
–Wirelesscommunication
–Noisymeasurements
–Nodefailureareexpected
•Scalabilitytoalargenumberofsensornodes
•Survivabilityinharshenvironments
•Experimentsaretime-andspace-intensive
33

Required mechanisms to meet
requirements
•Multi-hopwirelesscommunication
•Energy-efficientoperation
–Bothforcommunicationandcomputation,sensing,actuating
•Auto-configuration
–Manualconfigurationjustnotanoption
•Collaboration&in-networkprocessing
–Nodesinthenetworkcollaboratetowardsajointgoal
–Pre-processingdatainnetwork(asopposedtoattheedge)can
greatlyimproveefficiency
34

Contd..
•Data centric networking
–Focusing network design on data, not on node identifies(id-
centric networking)
–To improve efficiency
•Locality
–Do things locally (on node or among nearby neighbors) as far
as possible
•Exploit tradeoffs
–E.g., between invested energy and accuracy
35

Enabling technologies for WSN
•Costreduction
–Forwirelesscommunication,simplemicrocontroller,
sensing,batteries
•Miniaturization
–Someapplicationsdemandsmallsize
–“Smartdust”asthemostextremevision
•Energyscavenging
–Rechargebatteriesfromambientenergy(light,
vibration,…)
36

Single Node Architecture
24.08.2020

Single-node Architecture
Goals
•Surveythemaincomponentsofthecompositionofanodefora
wirelesssensornetwork
–Controller,radiomodem,sensors,batteries
•Understandenergyconsumptionaspectsforthesecomponents
–Puttingintoperspectivedifferentoperationalmodesand
whatdifferentenergy/powerconsumptionmeansfor
protocoldesign
38

Main components of a WSN node
•Controller-Acontrollertoprocessalltherelevantdata,capableof
executingarbitrarycode.
•Memory-Somememorytostoreprogramsandintermediatedata;
usually,differenttypesofmemoryareusedforprogramsanddata.
•Communicationdevice(s)-Turningnodesintoanetworkrequiresa
deviceforsendingandreceivinginformationoverawirelesschannel
•Sensors/actuators-Theactualinterfacetothephysicalworld:devices
thatcanobserveorcontrolphysicalparametersoftheenvironment
•Powersupply-Asusuallynotetheredpowersupplyisavailable,some
formofbatteriesarenecessarytoprovideenergy.Sometimes,someformof
rechargingbyobtainingenergyfromtheenvironmentisavailableaswell
(e.g.solarcells).
39

Single-node Architecture
•Eachofthesecomponentshastooperatebalancingthetrade-off
betweenassmallanenergyconsumptionaspossibleontheone
handandtheneedtofulfilltheirtasksontheotherhand.
40

Controller
Main options:
•General purpose processor
–Used in Desktop Computers
–Highly over powered
–Energy Consumption is excessive
•Micro controller
–optimized for embedded applications
–Flexibility in connecting other devices
–low power consumption
–Build in Memory
–Freely programmable and flexible
–Going to Sleep State
41

Controller
Main options:
•DSPs
–optimized for signal processing tasks
–Advantages are not suitable here
•FPGAs (Field –Programmable Gate Arrays)
–may be good for testing
–Reprogrammed
•ASICs
–Specialized processor
–Custom Design for application
–only when peak performance is needed, no flexibility
42

Controller
Example microcontrollers
•Intel strong ARM
–High end Processor with PDAs
–SA-1100 model has 32 bit reduced Instruction Set Computer
(RISC) core, running at up to 206 MHz
•Texas Instruments MSP430
–16-bit RISC core, up to 4 MHz, versions with 2-10 kbytesRAM,
several DACs, RT clock, prices start at 0.49 US$
•Atmel ATMega
–8-bit controller
–Usage in embedded application with external interfaces.
43

25.08.2020

Memory
•The memory component is fairly straightforward.
–Need for Random Access Memory (RAM) to store
intermediate sensor readings, packets from other nodes.
–While RAM is fast, disadvantage -loses its content if power
supply is interrupted.
•Program code can be stored in
–Read-Only Memory (ROM)
–Electrically Erasable Programmable Read-Only Memory
(EEPROM) or
–flash memory
45

Contd…
•Flash memory serve as intermediate storage of data in case
RAM is insufficient or when the power supply of RAM shut
down for some time.
•The long read and write access delays of flash memory need
high energy.
•Manufacturing costs and power consumption.
•Memory requirements are very much application
dependent.
46

Communication Devices
•Choice of transmission medium
•Transceivers
•Transceivers tasks and characteristics
•Transceiver structure
•Transceiver operational states
•Advanced Radio Concepts
•Nonradio frequency wireless communication
•Examples of radio transceivers
47

Choice of transmission medium
•The communication device is used to exchange data between
individual nodes.
•wired communication can actually be the method of choice and is
frequently applied in many sensor network like settings (using field
buses like Profibus, LON, CAN, or others).
•The first choice to make is that of the transmission medium
–Radio frequencies
–Optical communication
–Ultrasound
–other media like magnetic inductance are only used in very
specific cases
48

Contd..
•Radio Frequency (RF)-based communication -best fits the
requirements of most WSN applications
–It provides relatively long range and high data rates
–acceptable error rates at reasonable energy expenditure
–does not require line of sight between sender and receiver
•Wireless sensor networks typically use communication frequencies
between about 433 MHz and 2.4 GHz.
49
Picture taken from: https://www.britannica.com/science/radio-frequency-spectrum

Transceivers
•Forcommunication,bothatransmitterandareceiverare
requiredinasensornode.
•Theessentialtaskistoconvertabitstreamcomingfroma
microcontroller(orasequenceofbytesorframes)and
convertthemtoandfromradiowaves.
•Devicethatcombinesthesetwotasksinasingleentity-
transceivers.
50

Contd…
•Half-duplexoperationisrealized
•Arangeoflow-costtransceiversiscommerciallyavailable
thatincorporateallthecircuitryrequiredfortransmitting
andreceiving–modulation,demodulation,amplifiers,
filters,mixersetc
51

Transceiver tasks and characteristics
•Servicetoupperlayer
–Areceiverhastooffercertainservicestotheupperlayers,most
notablytotheMediumAccessControl(MAC)layer.
–Thisserviceispacketoriented;sometimes,
–Transceiveronlyprovidesabyteinterfaceorevenonlyabit
interfacetothemicrocontroller.
•Powerconsumptionandenergyefficiency
–Thesimplestinterpretationofenergyefficiencyistheenergy
requiredtotransmitandreceiveasinglebit.
–Transceiversshouldbeswitchablebetweendifferentstates-active
andsleeping.
52

Contd…
•Carrierfrequencyandmultiplechannels
–Transceiversareavailablefordifferentcarrierfrequencies-match
applicationrequirementsandregulatoryrestrictions.
–Channelshelpstoalleviatesomecongestionproblemsindense
networks.
–Suchchannelsor“subbands”arerelevant,forexample,forcertain
MACprotocols(FDMAormultichannelCSMA/ALOHAtechniques)
•Statechangetimesandenergy
–Atransceivercanoperateindifferentmodes:
•sendingorreceiving
•usedifferentchannels
•differentpower-safestates
53

Contd…
–Inanycase,thetimeandtheenergyrequiredtochangebetween
twosuchstatesareimportantfiguresofmerit.
–Theturnaroundtimebetweensendingandreceiving,forexample,
isimportantforvariousmediumaccessprotocols
•Datarates
–Carrierfrequencyandusedbandwidthtogetherwithmodulation
andcodingdeterminethegrossdatarate.
–Typicalvaluesareafewtensofkilobitspersecond
–Differentdataratescanbeachieved-byusingdifferent
modulationsorchangingthesymbolrate.
54

Contd…
•Modulations
–Thetransceiverstypicallysupportoneorseveralofon/off-keying,
ASK,FSK,orsimilarmodulations.
•Coding
–Sometransceiversallowvariouscodingschemestobeselected
•Transmissionpowercontrol
–Sometransceiverscandirectlyprovidecontroloverthe
transmissionpowertobeused;
–somerequiresomeexternalcircuitry.
–Maximumoutputpowerisusuallydeterminedbyregulations.
55

Contd…
•NoiseFigure
NFofanelementisdefinedastheratiooftheSignal-to-NoiseRatio
(SNR)ratioSNR
iattheinputoftheelementtotheSNRratioSNR
Oat
theelement’soutput:
NF=
�??????�??????
�??????�??????
ThedegradationofSNRduetotheelement’soperationandistypically
givenindB:NFdB=SNR
idB−SNR
OdB
56

Contd…
•Gain
–Thegainistheratiooftheoutputsignalpowertotheinputsignalpowerandis
typicallygivenindB.
–Amplifierswithhighgainaredesirabletoachievegoodenergyefficiency.
•Powerefficiency
–Theefficiencyoftheradiofrontendisgivenastheratiooftheradiatedpower
totheoverallpowerconsumedbythefrontend
–poweramplifier,theefficiencydescribestheratiooftheoutputsignal’spower
tothepowerconsumedbytheoverallpoweramplifier.
•Receiversensitivity
–Thereceiversensitivity(givenindBm)istheminimumsignalpoweratthe
receiverneededtoachieveaprescribedE
b/N
0
–Bettersensitivitylevelsextendthepossiblerangeofasystem.
57

Contd…
•Range
–Therangeisconsideredinabsenceofinterference;itevidently
dependsonthemaximumtransmissionpower,ontheantenna
characteristics,ontheattenuationcausedbytheenvironment,
whichinturndependsontheusedcarrierfrequency,onthe
modulation/codingschemethatisused,andonthebiterrorrate
thatoneiswillingtoacceptatthereceiver.
–Italsodependsonthequalityofthereceiver–basedon
sensitivity.
–Theproductswithrangesbetweenafewmetersandseveral
hundredsofmetersareavailable
58

Contd…
•Blockingperformance
–Theblockingperformanceofareceiverisitsachievedbiterror
rateinthepresenceofaninterferer.
–Blockingperformancecanbeimprovedbyinterposingafilter
betweenantennaandtransceiver.
–Animportantspecialcaseisanadjacentchannelinterfererthat
transmitsonneighboringfrequencies.
–Theadjacentchannelsuppressiondescribesatransceiver’s
capabilitytofilteroutsignalsfromadjacentfrequencybands(and
thustoreduceadjacentchannelinterference)hasadirectimpact
ontheobservedSignaltoInterferenceandNoiseRatio(SINR).
59

Contd…
•Outofbandemission
–Theinversetoadjacentchannelsuppressionistheoutofband
emissionofatransmitter.
–Tolimitdisturbanceofothersystems,oroftheWSNitselfina
multichannelsetup,thetransmittershouldproducelittle
transmissionpower
•CarriersenseandRSSI
–Theprecisesemanticsofthiscarriersensesignaldependsonthe
implementation.
–Forexample,theIEEE802.15.4standard[468]distinguishesthe
followingmodes:
60

Contd..
•Acarrierhasbeendetected,thatis,somesignalwhich
complieswiththemodulation.
•Carrierdetectedandenergyispresent.
•Thesignalstrengthatwhichanincomingdatapackethas
beenreceivedcanprovideusefulinformation(e.g.arough
estimateaboutthedistancefromthetransmitterassuming
thetransmissionpowerisknown);
•AreceiverhastoprovidethisinformationintheReceived
SignalStrengthIndicator(RSSI).
61

Contd..
•FrequencyStability
–Thefrequencystabilitydenotesthedegreeofvariation
fromnominalcenterfrequencieswhenenvironmental
conditionsofoscillatorsliketemperatureorpressure
change
–Poorfrequencystabilitycanbreakdowncommunication
links
•Voltagerange
–Transceiversshouldoperatereliablyoverarangeof
supplyvoltages
–Inefficientvoltagestabilizationcircuitryisrequired
62

Transceiver structures
•Radiofrequencyfrontend
–PerformsAnalogsignalprocessingintheactualradio
frequencyband
•BasebandProcessor
–PerformsallSignalProcessingindigitaldomain
–Communicateswithasensornodeprocessororother
digitalcircuitry
Betweenthesetwopartsafrequencyconversion
constitutedbyDACsandADCs
63

•ThePowerAmplifier(PA)acceptsupconvertedsignalsfromtheIFor
basebandpartandamplifiesthemfortransmissionovertheantenna.
TheLowNoiseAmplifier(LNA)amplifiesincomingsignalsupto
levelssuitableforfurtherprocessingwithoutsignificantlyreducing
theSNR[470].
64

•Therangeofpowersoftheincomingsignalsvariesfromvery
weaksignalsfromnodesclosetothereceptionboundaryto
strongsignalsfromnearbynodes;thisrangecanbeupto100
dB.
•LNAisactiveallthetimeandcanconsumeasignificantfraction
ofthetransceiver’senergy.
•Elementslikelocaloscillatorsorvoltage-controlledoscillators
andmixersareusedforfrequencyconversionfromtheRF
spectrumtoIFortothebaseband.
•TheincomingsignalatRFfrequenciesf
RFismultipliedina
mixerwithafixed-frequencysignalfromthelocaloscillator
(frequencyf
LO).
•IF=f
LO−f
RF.
65

Transceiver Operational States
•TransmitState:
–Inthetransmitstate,thetransmitpartofthetransceiverisactive
andtheantennaradiatesenergy.
•ReceiveState:
–thereceivepartisactive.
•IdleState:
–Atransceiverthatisreadytoreceivebutisnotcurrentlyreceiving
anythingissaidtobeinanidlestate.
–manypartsofthereceivecircuitryareactive,andotherscanbe
switchedoff.
66

Contd..
–Forexample,inthesynchronizationcircuitry,someelements
concernedwithacquisitionareactive,whilethoseconcernedwith
trackingcanbeswitchedoffandactivatedonlywhenthe
acquisitionhasfoundsomething.
–Amajorsourceofpowerdissipationisleakage.
•SleepState:
–significantpartsofthetransceiverareswitchedoff.
–Therearetransceiversofferingseveraldifferentsleepstates.
–Thesesleepstatesdifferintheamountofcircuitryswitchedoff
–associatedrecoverytimesandstartupenergy
67

Activity: Brainstorming
68

Advanced Radio Concepts
–Wakeupradio
•Oneofthemostpower-intensiveoperationsiswaitingfora
transmissiontocomein,readytoreceiveit.
•Duringthistime,thereceivercircuitmustbepoweredup-to
observewirelesschannelneedsspendingenergywithoutany
immediatebenefit.
•Areceiverstructureisnecessarythatdoesnotneedpowerbut
candetectwhenapacketstartstoarrive.
•Tokeepthisspecializedreceiversimple,itshouldraisean
eventtonotifyothercomponentsofanincomingpacket;upon
suchanevent,themainreceivercanbeturnedonandperform
theactualreceptionofthepacket.
•Such receiver concepts are called wakeup receivers
•Each packet –power consumption is 1 microwatt
69

Contd…
–Spreadspectrumtransceivers
•ASK,FSKhaslimitedPerformancewhenlotofinterference.
•ToovercomeSpreadspectrumtransceivers–DSSS(Direct
Sequencespreadspectrum,FrequencyHoppingSpread
Spectrum
•Complexhardwareandcostly
–Ultrabandcommunication
•Usingsuchalargebandwidth,anultrawideband
communicationwilloverlapwiththespectrumofa
conventionalradiosystem.
•But,becauseofthelargespreadingofthesignal,averysmall
transmissionpowersufficesUWBtransmitterisactually
relativelysimplesinceitdoesnotneedoscillatorsorrelated
circuitryfoundintransmittersforacarrier-frequency-based
transmitter.
•Thereceiversrequirecomplextimingsynchronization.
70

Non radio frequency wireless
communication
–Optical
–Opticallinkbetweensensors
–Advantage–verysmallenergyperbit
–LEDs–Highefficiencysenders
–Disadvantages:Stronglyinfluencedbywhethercondition
–LineofSight
–Ultrasound
–Forunderwatercommunication:Ultrasoundcommunication
issuitable
–Travelsforlongdistances
–Differentpropagationspeed
71

Examples of radio Transceiver
–RFMTR1000family
–Hardwareaccelerators(Micamotes)
–ChipconCC100andCC2420family
–InfineonTDA525xfamily
–IEEE802.15.4/EmberEM2420RFTransceiver
–NationalSemiconductorLMX3162
–ConexantRDSSS9M
72

Contd..
–RFMTR1000family
•TheTR1000familyofradiotransceiversfromRF
Monolithics2isavailableforthe916MHzand868MHz
frequencyrange.
•Itworksina400kHzwidebandcenteredat,for
example,916.50MHz.
•Itisintendedforshort-rangeradiocommunicationwith
upto115.2kbps.
•Low-powerconsumptioninbothsendandreceivemodes
andespeciallyinsleepmode.
73

Contd..
–Hardwareaccelerators(Micamotes)
•TheMicamotesusetheRFMTR1000transceiverand
containalsoasetofhardwareaccelerators.
•Thetransceiveroffersaverylow-levelinterface,giving
themicrocontrollertightcontroloverframeformats,
MACprotocols,andsoforth.
•Ontheotherhand,framingandMACcanbevery
computationintensive,forexample,forcomputing
checksums,formakingbytesoutofseriallyreceivedbits
orfordetectingStartFrameDelimiters(SFDs)ina
streamofsymbols
74

•ChipconCC1000
–Range 300 to 1000 MHz, programmable in 250 Hz steps
–FSK modulation
–Provides RSSI
•ChipconCC2400
–Implements 802.15.4
–2.4 GHz, DSSS modem
–250 kbps
–low power consumption than above transceivers

•Infineon TDA 525x family
–provides flexible, single-chip, energy-efficient transceivers
–E.g., TDA5250: 868 -870 MHz transceiver
–ASK or FSK modulation
–RSSI, highly efficient power amplifier
–Intelligent power down, “self-polling” mechanism(define
data rate)
–Excellent blocking performance (quite resistant to
interference)

Example radio transceivers for ad hoc networks
•Adhocnetworks:Usually,higherdataratesarerequired
•Typical:IEEE802.11b/g/aisconsidered
–Upto54MBit/s
–Relativelylongdistance(100sofmeterspossible,typical10sof
metersathigherdatarates)
–Worksreasonablywell(butcertainlynotperfect)inmobile
environments
–Problem:expensiveequipment,quitepowerhungry

Sensors and actuators
01.09.2020

Contd…
•Sensors
–Sensors can be roughly categorized into three categories
•Passive,omnidirectionalsensors
–Thesesensorscanmeasureaphysicalquantityatthepointofthe
sensornodewithoutactuallymanipulatingtheenvironmentby
activeprobing–inthissense,theyarepassive.
–Moreover,someofthesesensorsactuallyareself-poweredinthe
sensethattheyobtaintheenergytheyneedfromtheenvironment
–energyisonlyneededtoamplifytheiranalogsignal.Thereisno
notionof“direction”involvedinthesemeasurements.

Contd…
–Typicalexamplesforsuchsensorsincludethermometer,light
sensors,vibration,microphones,humidity,mechanicalstress
ortensioninmaterials,chemicalsensorssensitiveforgiven
substances,smokedetectors,airpressure,andsoon.
•Passive,narrow-beamsensors
–Thesesensorsarepassiveaswell,buthaveawell-defined
notionofdirectionofmeasurement.
–Atypicalexampleisacamera,whichcan“take
measurements”inagivendirection,buthastoberotatedif
needbe.

Contd…
•Active sensors
–Thislastgroupofsensorsactivelyprobesthe
environment,forexample,asonarorradarsensoror
sometypesofseismicsensors,whichgenerateshock
wavesbysmallexplosions.
•Obvioustrade-offsincludeaccuracy,dependability,energy
consumption,cost,size,andsoon–allthiswouldmakea
detaileddiscussionofindividualsensorsquiteineffective.
•Overall,mostofthetheoreticalworkonWSNsconsiders
passive,omnidirectionalsensors.

Contd…
•Narrow-beam-typesensorslikecamerasareusedinsomepractical
testbeds,butthereisnorealsystematicinvestigationonhowto
controlandschedulethemovementofsuchsensors.
•Eachsensornodehasacertainareaofcoverageforwhichitcan
reliablyandaccuratelyreporttheparticularquantitythatitis
observing.

Actuators
•Inprinciple,allthatasensornodecandoistoopenorclosea
switchorarelayortosetavalueinsomeway.
•Whetherthiscontrolsamotor,alightbulb,orsomeother
physicalobjectisnotreallyofconcerntotheway
communicationprotocolsaredesigned.
•Inarealnetwork,however,carehastobetakentoproperly
accountfortheidiosyncrasiesofdifferentactuators.
•Also,itisgooddesignpracticeinmostembeddedsystem
applicationstopairanyactuatorwithacontrollingsensor–
followingtheprincipleto“nevertrustanactuator”

Power supply of sensor nodes
•Goal:toprovideasmuchenergyaspossibleatsmallestcost/volume/
weight/rechargetime/longevity
–InWSN,rechargingmayormaynotbeanoption
•Options
–Primarybatteries–notrechargeable
–Secondarybatteries–rechargeable,onlymakessensein
combinationwithsomeformofenergyharvesting
•Storingpowerisconventionallydoneusingbatteries.
•Asaroughorientation,anormalAAbatterystoresabout2.2–2.5Ah
at1.5V.
•Batterydesignisascienceandindustryinitself,andenergy
scavenginghasattractedalotofattentioninresearch.

Contd…
Storing energy: Batteries
•Traditional batteries
–Thepowersourceofasensornodeisabattery,either
nonrechargeable(“primarybatteries”)or,ifanenergyscavenging
deviceispresentonthenode,alsorechargeable(“secondary
batteries”).
–Insomeformorother,batteriesareelectro-chemicalstoresfor
energy–thechemicalsbeingthemaindeterminingfactorof
batterytechnology.

Contd…
Battery examples
•Energy per volume (Joule per cubic centimeter):

Contd…
Upon these batteries, very tough requirements are imposed:
Capacity
•They should have high capacity at a small weight, small
volume, and low price.
•The main metric is energy per volume, J/cm3. Above table
shows some typical values of energy densities, using
traditional, macroscale battery technologies.

Contd…
Capacity under load
•Theyshouldwithstandvarioususagepatternsasasensor
nodecanconsumequitedifferentlevelsofpowerovertime
andactuallydrawhighcurrentincertainoperationmodes.
•Inmosttechnologies,thelargerthebattery,themore
powercanbedeliveredinstantaneously.
•Inaddition,theratedbatterycapacityspecifiedbya
manufacturerisonlyvalidaslongasmaximumdischarge
currentsarenotexceeded,lestcapacitydropsoreven
prematurebatteryfailureoccurs

Contd…
Self-discharge
•Theirself-dischargeshouldbelow;theymightalsohaveto
lastforalongtime(usingcertaintechnologies,batteriesare
operationalonlyforafewmonths,irrespectiveofwhether
powerisdrawnfromthemornot).
•Zinc-airbatteries,forexample,haveonlyaveryshort
lifetime(ontheorderofweeks),whichoffsetstheir
attractivelyhighenergydensity.

Contd…
Efficientrecharging
•Rechargingshouldbeefficientevenatlowand
intermittentlyavailablerechargepower;consequently,the
batteryshouldalsonotexhibitany“memoryeffect”.
•Someoftheenergy-scavengingtechniquesareonlyableto
producecurrentintheμAregion(butpossiblysustained)at
onlyafewvoltsatbest.
•Currentbatterytechnologywouldbasicallynotrechargeat
suchvalues.

Contd…
Relaxation
•Theirrelaxationeffect–theseemingself-rechargingofan
emptyoralmostemptybatterywhennocurrentisdrawnfrom
it,basedonchemicaldiffusionprocesseswithinthecell–should
beclearlyunderstood.
•Batterylifetimeandusablecapacityisconsiderablyextendedif
thiseffectisleveraged.
•example,itispossibletousemultiplebatteriesinparalleland
“schedule”thedischargefromonebatterytoanother,depending
onrelaxationpropertiesandpowerrequirementsofthe
operationstobesupported

Contd…
Energy scavenging
•Someoftheunconventionalenergystores–fuelcells,microheat
engines,radioactivity–convertenergyfromsomestored,secondary
formintoelectricityinalessdirectandeasytousewaythananormal
batterywoulddo.
•Theentireenergysupplyisstoredonthenodeitself–oncethefuel
supplyisexhausted,thenodefails.
•Toensuretrulylong-lastingnodesandwirelesssensornetworks,such
alimitedenergystoreisunacceptable.
•Rather,energyfromanode’senvironmentmustbetappedintoand
madeavailabletothenode–energyscavengingshouldtakeplace.
Severalapproachesexist

Photovoltaics
•Thewell-knownsolarcellscanbeusedtopowersensornodes.
•Theavailablepowerdependsonwhethernodesareusedoutdoorsor
indoors,andontimeofdayandwhetherforoutdoorusage.
•Differenttechnologiesarebestsuitedforeitheroutdoororindoor
usage.
•Theresultingpowerissomewherebetween10μW/cm
2
indoorsand
15mW/cm
2
outdoors.
•Singlecellsachieveafairlystableoutputvoltageofabout0.6V(and
havethereforetobeusedinseries)aslongasthedrawncurrentdoes
notexceedacriticalthreshold,whichdepends,amongotherfactors,
onthelightintensity.
•Hence,solarcellsareusuallyusedtorechargesecondarybatteries.

Temperaturegradients
•Differencesintemperaturecanbedirectlyconvertedtoelectrical
energy.
•Theoretically,evensmalldifferenceof,forexample,5Kelvincan
produceconsiderablepower,butpracticaldevicesfallveryshortof
theoreticalupperlimits(givenbytheCarnotefficiency).
•Seebeckeffect-basedthermoelectricgeneratorsarecommonly
considered;oneexampleisagenerator,whichwillbecommercially
availablesoon,thatachievesabout80μW/cm
2
atabout1Vfroma5
Kelvintemperaturedifference

Vibrations
•Onealmostpervasiveformofmechanicalenergyisvibrations:
•wallsorwindowsinbuildingsareresonatingwithcarsortrucks
passinginthestreets,machineryoftenhaslowfrequencyvibrations,
ventilationsalsocauseit,andsoon.
•Theavailableenergydependsonbothamplitudeandfrequencyofthe
vibrationandrangesfromabout0.1μW/cm
3
upto10,000μW/cm
3
forsomeextremecases(typicalupperlimitsarelower).
•Convertingvibrationstoelectricalenergycanbeundertakenbyvarious
means,basedonelectromagnetic,electrostatic,orpiezoelectric
principles.

Pressurevariations
•Somewhatsimilartovibrations,avariationofpressurecan
alsobeusedasapowersource.Suchpiezoelectric
generatorsareinfactusedalready.
•Onewell-knownexampleistheinclusionofapiezoelectric
generatorintheheelofashoe,togeneratepowerasa
humanwalksabout.
•Thisdevicecanproduce,onaverage,330μW/cm
2
.Itis,
however,notclearhowsuchtechnologiescanbeappliedto
WSNs.

Flowofair/liquid
•Anotheroften-usedpowersourceistheflowofairorliquid
inwindmillsorturbines.
•Thechallengehereisagaintheminiaturization,butsomeof
theworkonmillimeterscaleMEMSgasturbinesmightbe
reusable.
•However,thishassofarnotproducedanynotableresults.

Comparison of energy sources

•Astheseexamplesshow,energyscavengingusuallyhastobe
combinedwithsecondarybatteriesastheactualpower
sourcesarenotabletoprovidepowerconsistently,
uninterruptedly,atarequiredlevel;rather,theytendto
fluctuateovertime.
•Thisrequiresadditionalcircuitryforrechargingofbatteries,
possiblyconvertingtohigherpowerlevels,andabattery
technologythatcanberechargedatlowcurrents
Tags