signalsandsystemsztransformEEEmaterial.pdf

Nityasrisumathi 2 views 60 slides Mar 11, 2025
Slide 1
Slide 1 of 60
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60

About This Presentation

z transform


Slide Content

Z Transform
Dr.R.Helen, APEEE, TCE
9/14/2020

Z-Transform
Syllabus
•Definitions and Properties of z-transform
•Rational z-transforms
•Inverse z-transform
•One sided z-transform
•Analysis of LTI systems in z-domain
e-
2
9/14/2020

Z-Transform definition

3
Z-transform is mainly used for analysis of discrete signal and discrete
LTI system. Z.T of discrete time single x (n) is defined by the following
expression.
X (z)   x(n)z
n

n
where, X(z) z-transform of x(n)
zcomplex variable = re
jw
From the above definition of Z.T. it is clear that ZT is power series & it
exist for only for those values of z for which X(z) attains finite value (
convergence) ,which is defined by Region of convergence. (ROC)

Region of Convergence: (ROC)
Region of Convergence is set of those values of z for which power
series x (z) converges. OR for which power series, x (z) attains finite value.
9/14/2020

Z-Transform of Finite duration signal
Find the Z - Transform and mention the Region of Convergence
(ROC) for the following discrete time sequences.

1. x (n) = { 2 1 2 3}

2. x (n) = { 2, 1, 2 3 }

3. x (n) = { 1 2 1 -2 3 1}
1
st
2
nd
3
rd
example Is of causal signal
example Is of anti-causal signal
example Is of non-causal signal
4
9/14/2020

Solution(1)

n
X (z)   x(n)z
n
x (n) = { 2 1 2 3}

Z.T. is defined as
In this case x(z) is finite for all values of z, except |z| = 0.
Because at z = 0, x(z) = ∞.
Thus ROC is entire z-plane except |z| = 0.
ROC
X (z)  x(0)  x(1)z
1
 x(2)z
2
 x(3)z
3
X (z)  2 1z
1
 2z
2
 3z
3
X (z)  2  z
1
 2z
2
 3z
3
ROC is a set of those values of z for which x (z) is not infinite
Z=0
5
9/14/2020

Solution(2)

X (z)   x(n)z
n
n
X (z)  x(0)  x(1)z
1
 x(2)z
2
 x(3)z
3
x (n) = { 2 1 2 3}

Z.T. is defined as
In this case X(z) is finite for all values of z, except |z| = ∞.
Because at z = ∞, X(z) = ∞.
Thus ROC is entire z-plane except |z| = ∞.
ROC
X (z)  3  2z
1
1z
2
 2z
3
X (z)  3  2z  z
2
 2z
3
ROC is a set of those values of z for which x (z) is not infinite
Z= ∞
6
9/14/2020

Solution(3)

X (z)   x(n)z
n
x (n) = { 1 2 1 -2 3 1}
Z.T. is defined as
ROC is a set of those values of z for which x (z) is not infinite
In this case X(z) is finite for all values of z, except |z| = ∞.
Because at z = ∞, X(z) = ∞.
Thus ROC is entire z-plane except |z| = 0 &|z| = ∞.
ROC
Z= ∞
n

X (z)  x(2)z
2
 x(1)z
1
 x(0)  x(1)z
1
 x(2)z
2
 x(3)z
3
X (z)  1z
2
 2z
1
1 2z
1
 3z
2
1z
3
 z
3
X (z)  z
2
 2z
1
1 2z
1
 3z
2
Z=0
7
9/14/2020

Quiz
Find the Z - Transform and mention the Region of Convergence
(ROC) for the following discrete time sequences.
1. x (n) =

2. x (n) =
 (n  2)
 (n)
z
-2
Ans (1) ROC- entire z-plane except |z|= 0
Ans (2) 1 ROC- entire z-plane
9/14/2020

z-Transform of infinite duration signal
Find the z-transform for following discrete time sequences. Also mention
ROC for all the cases.
xn  a
n
U n
xn  a
n
U  n 1
x(n)  a
n
U (n)  b
n
U (n 1)
1
2
3
9/14/2020

Solution(1)
Sequence is causal xn  a
n
U n

X (z)   x(n)z
n

n
Z.T. for the given sequence x (n) is defined as

  a
n
U (n)z
n
n

X (z)   a
n
z
n
n0


1
n0
n
az  X (z) 
U(n)=0 for
n<0

n0
 a
n
 a
0
 a
1
 a
2
 ....... We know that
Series converges iff |a|<1

1
n0 1  a
 a
n
 We also know a  1 for
Thus, x (z) converges when | a z
–1
| < 1
1
1
1 az
X z 
z
z  a
X z  
–1
for | a z | < 1
for | a /z | < 1
for | z | > |a|
ROC is outside the
circle |z|=|a|
9/14/2020

Solution(2)
Sequence is anti-causal xn  a
n
U  n 1

X (z)   x(n)z
n

n
Z.T. for the given sequence x (n) is defined as

   a
n
U (n 1)z
n
n

1
1
n
n
az  X (z)  
U(-n-1)=0 for
n>-1

n0
 a
n
 a
0
 a
1
 a
2
 ....... We know that
Series converges iff |a|<1

1
n0 1  a
 a
n
 We also know a  1 for
Thus, x (z) converges when | a
–1
z | < 1
a z
1
1 a
1
z
X z  
z
z  a
X z  
–1
for | a z | < 1
for | z /a | < 1
for | z | < |a|
ROC is inside the
circle |z|=|a|
Put n=-m
 
1
1
1
1
m
m
m
m
a z  az    X (z)  
9/14/2020
U(-n-1)=1 n less than 0

Problems
9/14/2020

Solution(1)
9/14/2020

Solution(2)
9/14/2020

Solution(3)
9/14/2020

Problem:
1
3 (1
1 z
1
)(1 2z
1
)
X (z) 
Show all possible ROC’s and pole-zero
diagram z-transform given below
1/3
2 1
|z|=1
1/3
2 1
|z|=1
1/3 1
|z|=1
If x[n] is left sided signal
i.e. anti-causal signal If x[n] is right sided signal
i.e. causal signal
If x[n] is double sided
signal
i.e. non-causal signal
9/14/2020

Inverse z-transform
•Synthetic Division Method


•Partial Fraction Method


•Cauchy’s Integration Method
9/14/2020

Synthetic division Example(1)
1
1 az
1
X (z) 
1 az
1 1
1 az
1
1
az
1
az
1
 a
2
z
2
az
1
a
2
z
2
a
2
z
2
 a
3
z
3
a
3
z
3
•Since ROC is |z| >a, x[n] is causal
sequence or right sided sequence.
•Quotient series should have –ve
powers of z as z-transform of causal
sequence has –ve powers of z
 a
2
z
2
a
4
.....} a
2
a
3
x[n]  {1 a

| z || a |
9/14/2020

Synthetic division Example(2)
1
1 az
1
X (z) 
 az
1
1 1
1 a
1
z
a
1
z
a
1
z  a
2
z
2
a
1
z
a
2
z
2
a
2
z
2
 a
3
z
3
a
3
z
3
•Since ROC is |z| >a, x[n] is anti-causal
sequence or left sided sequence.
•Quotient series should have +ve powers
of z , as z-transform of anti-causal
sequence has +ve powers of z
0 .......}

 a
1
 a
2
x[n]  {....... a
3
| z || a |
 a
2
z
2
 a
3
z
3
9/14/2020

Problem
9/14/2020

Solution (a)
2 2 1
3 z
1

1 z
2
X (z) 
1
ROC :| z | 1
As |z|>1, x[n] is causal sequence
1 2
1
3
2 z 
1
2 z
1
1
1 2
1
3
2 z 
1
2 z
2

3 z
1
4

7 z
2
8

15 z
3
16

31 z
4
3 z
1

1 z
2
2 2
3 z
1

9 z
2

3 z
3
2 4 4
7 z
2

3 z
3
4 4
4 14 8
7 
21 
7 z
2
z
3
z
4
......}
31
16
15
8
7
4
3
2
15 z
3

7 z
4
8 8

x[n]  {1

9/14/2020

Solution (b)
2 2 1
3 z
1

1 z
2
X (z) 
1
2 ROC :| z |
1
As |z|<1/2, x[n] is anti-causal sequence
1

3
2 z 1
1 z
2
2 1
1 3z  2z
2
3z  2z
2
 2z
2
 6z
3
14z
4
62 30 14 6 2 0 0}

x[n]  {......
 30z
5  62z
6
9/14/2020

Z-transform Pairs
9/14/2020

Z-transform Pairs
9/14/2020

Z-transform Pairs
9/14/2020

Partial Fraction Method
2 1
1 6z  8z
 4  8z
1
H (z) 

(1 4z
1
)(1 2z
1
)
 4  8z
1

1 2z
1
A
2
1 4z
1
A
1
H (z) 
4
1
z
1

1
1 2z
 4  8z
1
A
1 
2
 
8
1  8
z
1

1
1 4z
1
 4  8z
1
 
6
(1/ 2)  12 A
2 
8

12
1 2z
1
1 4z
1
 H (z) 
Taking IZT ,we get h[n]  [12(4)
n
 8(2)
n
]u(n)
Partial Fraction
Expansion
9/14/2020

Different Pole’s Cases
a)Distinct Real Poles
b)Complex Conjugate and Distinct Poles
c)Repeated Poles
9/14/2020

Distinct Real Poles
D(z)
H (z) 
N (z) Where N(z) and D(z) are polynomials of order m
and n respectively
If m<n,
N (z)
(z  p
1 )(z  p
2 )(z  p
3 ) .......(z  p
n )
H (z) 
A
n A
3 A
1 A
2
(z  p
n )
   .... 
(z  p
1 ) (z  p
2 ) (z  p
3 )
H (z) 
where A
k  (z  p
k )H (z)
z  p
k
If m>=n, use division
D(z)
H (z)  Q 
N (z)
such that m’<n, if not repeat division
Q- Quotient
N(z)- remainder
D(z)- Divisor
9/14/2020

Problem
9/14/2020

Contd..
9/14/2020

Complex-Conjugate & Distinct Poles
(z  2)(z
2
 2z  5)
z(z
2
 2z)
X (z) 

(z  2)(z
2
 2z  5)
2z z
2
z
X (z) z
2
2z

(z  2)(z  2  j1)(z  2  j1)
A
3 A
1 A
2
z
 
X (z)

z2
(z  2  j1)(z  2  j1)
2z
(z  2) (z  2  j1)
z
2
A
1 
(z  2  j1)
 0
z
2
z (2 j1)
(z  2)(z  2  j1)
2z
A
2 
j
2

1
3
z
2
z(2 j1)
(z  2)(z  2  j1)
2z
A 
j
2

1
9/14/2020

Contd..
9/14/2020

Repeated Poles
  
r
k
q
k
A B
k 1 z  p
k k 1 z  p
k
H (z) 
where q  no. of distinct poles and not repetitive
r  no. of repetition of repetitive pole

A
k  is calculated by method as described earlier
B
k  is calculated by following equation
r
i k z  p
j
d
r k
B  (z  p ) F (z)
(r  k )! dz
r k
1
9/14/2020

Problem
(z 1)(z  2)
3
z(z
2
 9)
H (z) 
9/14/2020

Cauchy’s Integration (Residue) Method
9/14/2020

Problem
(z 1)(z  2)
10z
X (z) 
(z 1)(z  2) (z 1)(z  2)
10z 10z
n
z
n1
 G(z)  X (z)z
n1

G(z) has two poles ,z =1 & z=2
x(n) = Residue of G(z) at z=1 + Residue of G(z) at z=2
 10
1 2

10.1
n
z 1
(z 1)(z  2)
10z
n
R
z 1  (z 1)
1
10.(2)
n
10z
n
 10.(2)
n

(z 1)(z  2)
R  (z  2)
z 2
z 2
x(n)  10 10(2)
n
9/14/2020

Problem
9/14/2020

Problem
9/14/2020

Quiz
Find IZT for following z-transforms
1
(z 1)(z  0.5)
X (z) 
(1 e
a
)z
X (z) 
(z 1)(z  e
a
)
9/14/2020

z-transform properties
9/14/2020

Contd..
9/14/2020

Contd..
9/14/2020

Problem on Properties 1-8
a
n
u(n) 1) Find z-transform of
We know
1
1 z
1
u(n) 
z

a
n
u(n) 
z
U (
z )
a
and Property 3
1
)
1
a 1 (
z
a
n
u(n) 
z

1

1 az
1
9/14/2020

Contd..
2) Find IZT of X (z)  log(1 az
1
)
|z|>|a|
We know
2

x
3

x
4
3 4
log(1 x)  x 
x
2

 (1)  ..... 
n1
n1
n
x
n


 (1)
1 n
n1 (az )
n
X (z)  log(1 az
1
)

n 
a
n
 
n1 
 (1)
n1
z
n
a
n
n
n1





n 


 u(n 1) z (1)
n1
n
Comparing above equation with z-transform definition,

n
X (z)   x(n)z
n
we get
a
n
x(n)  (1)
n1
u(n 1)
n



 0
n x ( n ) 
(  1)
a
n
n 1
n  1
otherwise
9/14/2020

Contd..
9/14/2020

Contd..
We know , property of differentiation in z domain
ROC  R
nx[n]
z
Z
d
( X (z))
dz
If x[n]
z
 X (z) with then
Thus we have
1
1 az
1
a
n
u(n) 
z

1
dz 1 az
1
na
n
u(n) 
z
 z
d
1
(a.(1).z
2
)
(1 az
1
)
2
 z(1)
1 2
(1 az )
az
2
 z
1 2

(1 az )
az
1
9/14/2020

Contd..
9/14/2020

Contd..
(1 az
1
)
3
2a
2
z
1
n(n 1)a
n1
u(n 1) 
z

2
1
a
2
z
1
n(n 1)a
n1
u(n 1) 
z

2
1
(1 az
1
)
3
(1 az
1
)
3
z
1
n(n 1)a
n1
u(n 1) 
z

Multiply by 1/2
Divide by a
2
If a=0.5, we get
1
)
3
(1 0.5z
z
1
1 n(n 1)0.5
n1
u(n 1) 
z

2
 X
1 (z)
------------(2)
Multiply by 3z
-1
in eq. (2) and putting a=0.5, we get
2
3
(1 az
1
)
3
3z
2
(n 1)(n)0.5
n2
u(n) 
z
  X
2 (z)
x
1 (n) 
x
2 (n) 
9/14/2020

Contd..
x(n)  x
1 (n)  x
2 (n)

 x(n) 
1 n(n 1)0.5
n1
u(n 1) 
3 (n 1)(n)0.5
n2
u(n)
2 2
9/14/2020

Problem on Initial & Final value theorem
Find the initial and final value of x(n) ,if
(z 1)(z  0.5)
z(z  2)
X (z) 
z(z  2)
x[0]  lim
z (z 1)(z  0.5)
We know initial value theorem
x[0]  lim X (z)
z
 lim
z
2
(1 2z
1
)
z z
2
(1 z
1
)(1 0.5z
1
)
 1
(1 0)(1 0)
1 0
x[0] 
9/14/2020

Contd..
9/14/2020

Contd..
Find the initial and final value of following functions a) u(n) b) r(n)
Solution (a): we know
1
1 z
1
u(n) 
z

u[0]  limU (z)
z
1 1
 1
1 0
  lim
z 1 z
1
1
1 z
1
u()  lim(1 z
1
)
z1
 1
9/14/2020

Contd..
9/14/2020

Problems on convolution
Find x(n) using convolution theorem if
(z 1)
2
z
X (z) 
X (z)  
(z 1)
2
(z 1) (z 1)
z z 1
X (z)  X
1 (z).X
2 (z)
X (z) 
z

1
1
(z 1) (1 z
1
)
Taking IZT ,we get
1
x (n)  u(n)
1
(z 1)
X
2 (z) 
1
1 z
1
u(n) 
z

We know
1
1 z
1
u(n 1) 
z
 z
1
1
z 1
 u(n 1) 
z
 x
2 (n)  X
2 (z)
2
x (n)  u(n 1)
9/14/2020

Contd..
Now we know convolution property x (n)* x (n) 
z
 X (z).X (z)
1 2 1 2

 x(n)  x
1 (n)* x
2 (n)
 u(n)*u(n 1)
 u(k)u(n  k 1)
k 
u(k)
u(-k-1)
n<0,x(n)=0
n=0 ,x(n)=0
n=1 ,x(n)=1
u(1-k-1)
n=2 ,x(n)=2
u(2-k-1)
 x(n)  nu(n)
9/14/2020

Contd..
Find out convolution of two sequences given below

a)x(n)  {2 1 1 0 3}& h(n)  {1 2 1}
 


b)x(n)  {1 3 2 1}& h(n)  {1 1}
9/14/2020

Contd..

h(n)  {1
x(n)  {2 1 1 0 3}
2 1}

Solution (a)
 z
3
 z
5
 2z
1
 z
2
X (z)  2  z
1
 z
2
 0  3z
4
H (z)  z  2  z
1
Using convolution property
x(n)* h(n)  Z
1
{X (z).H (z)}
X (z).H (z)  (2  z
1
 z
2
 0  3z
4
)(z  2  z
1
)
 2z 1 z
1
 3z
3
 4  2z
1
 2z
2
 6z
4
9/14/2020

Contd..
X (z).H (z)  2z  5  z
1
 3z
2
 4z
3
 6z
4
 3z
5
x(n)* h(n)  Z
1
{X (z).H (z)}
x(n)* h(n)  {2 5 1  3 4 6  3}

9/14/2020

Contd..
Solution (b)
x(n)  {1 3 2 1}
h(n)  {1 1}
 z
4
 2z
3
 z
3
X (z)  1 3z
1
 2z
2
 3z
3
H (z)  1 z
1
X (z).H (z)  (1 3z
1
 2z
2
 3z
3
)(1 z
1
)
 1 3z
1
 2z
2
 z
1
 3z
2
 1 4z
1
 5z
2
 z
3
 z
4

1} x(n)* h(n)  {1 4 5 1

9/14/2020
Tags