Z-Transform
Syllabus
•Definitions and Properties of z-transform
•Rational z-transforms
•Inverse z-transform
•One sided z-transform
•Analysis of LTI systems in z-domain
e-
2
9/14/2020
Z-Transform definition
3
Z-transform is mainly used for analysis of discrete signal and discrete
LTI system. Z.T of discrete time single x (n) is defined by the following
expression.
X (z) x(n)z
n
n
where, X(z) z-transform of x(n)
zcomplex variable = re
jw
From the above definition of Z.T. it is clear that ZT is power series & it
exist for only for those values of z for which X(z) attains finite value (
convergence) ,which is defined by Region of convergence. (ROC)
Region of Convergence: (ROC)
Region of Convergence is set of those values of z for which power
series x (z) converges. OR for which power series, x (z) attains finite value.
9/14/2020
Z-Transform of Finite duration signal
Find the Z - Transform and mention the Region of Convergence
(ROC) for the following discrete time sequences.
1. x (n) = { 2 1 2 3}
2. x (n) = { 2, 1, 2 3 }
3. x (n) = { 1 2 1 -2 3 1}
1
st
2
nd
3
rd
example Is of causal signal
example Is of anti-causal signal
example Is of non-causal signal
4
9/14/2020
Solution(1)
n
X (z) x(n)z
n
x (n) = { 2 1 2 3}
Z.T. is defined as
In this case x(z) is finite for all values of z, except |z| = 0.
Because at z = 0, x(z) = ∞.
Thus ROC is entire z-plane except |z| = 0.
ROC
X (z) x(0) x(1)z
1
x(2)z
2
x(3)z
3
X (z) 2 1z
1
2z
2
3z
3
X (z) 2 z
1
2z
2
3z
3
ROC is a set of those values of z for which x (z) is not infinite
Z=0
5
9/14/2020
Solution(2)
X (z) x(n)z
n
n
X (z) x(0) x(1)z
1
x(2)z
2
x(3)z
3
x (n) = { 2 1 2 3}
Z.T. is defined as
In this case X(z) is finite for all values of z, except |z| = ∞.
Because at z = ∞, X(z) = ∞.
Thus ROC is entire z-plane except |z| = ∞.
ROC
X (z) 3 2z
1
1z
2
2z
3
X (z) 3 2z z
2
2z
3
ROC is a set of those values of z for which x (z) is not infinite
Z= ∞
6
9/14/2020
Solution(3)
X (z) x(n)z
n
x (n) = { 1 2 1 -2 3 1}
Z.T. is defined as
ROC is a set of those values of z for which x (z) is not infinite
In this case X(z) is finite for all values of z, except |z| = ∞.
Because at z = ∞, X(z) = ∞.
Thus ROC is entire z-plane except |z| = 0 &|z| = ∞.
ROC
Z= ∞
n
Quiz
Find the Z - Transform and mention the Region of Convergence
(ROC) for the following discrete time sequences.
1. x (n) =
2. x (n) =
(n 2)
(n)
z
-2
Ans (1) ROC- entire z-plane except |z|= 0
Ans (2) 1 ROC- entire z-plane
9/14/2020
z-Transform of infinite duration signal
Find the z-transform for following discrete time sequences. Also mention
ROC for all the cases.
xn a
n
U n
xn a
n
U n 1
x(n) a
n
U (n) b
n
U (n 1)
1
2
3
9/14/2020
Solution(1)
Sequence is causal xn a
n
U n
X (z) x(n)z
n
n
Z.T. for the given sequence x (n) is defined as
a
n
U (n)z
n
n
X (z) a
n
z
n
n0
1
n0
n
az X (z)
U(n)=0 for
n<0
n0
a
n
a
0
a
1
a
2
....... We know that
Series converges iff |a|<1
1
n0 1 a
a
n
We also know a 1 for
Thus, x (z) converges when | a z
–1
| < 1
1
1
1 az
X z
z
z a
X z
–1
for | a z | < 1
for | a /z | < 1
for | z | > |a|
ROC is outside the
circle |z|=|a|
9/14/2020
Solution(2)
Sequence is anti-causal xn a
n
U n 1
X (z) x(n)z
n
n
Z.T. for the given sequence x (n) is defined as
a
n
U (n 1)z
n
n
1
1
n
n
az X (z)
U(-n-1)=0 for
n>-1
n0
a
n
a
0
a
1
a
2
....... We know that
Series converges iff |a|<1
1
n0 1 a
a
n
We also know a 1 for
Thus, x (z) converges when | a
–1
z | < 1
a z
1
1 a
1
z
X z
z
z a
X z
–1
for | a z | < 1
for | z /a | < 1
for | z | < |a|
ROC is inside the
circle |z|=|a|
Put n=-m
1
1
1
1
m
m
m
m
a z az X (z)
9/14/2020
U(-n-1)=1 n less than 0
Problems
9/14/2020
Solution(1)
9/14/2020
Solution(2)
9/14/2020
Solution(3)
9/14/2020
Problem:
1
3 (1
1 z
1
)(1 2z
1
)
X (z)
Show all possible ROC’s and pole-zero
diagram z-transform given below
1/3
2 1
|z|=1
1/3
2 1
|z|=1
1/3 1
|z|=1
If x[n] is left sided signal
i.e. anti-causal signal If x[n] is right sided signal
i.e. causal signal
If x[n] is double sided
signal
i.e. non-causal signal
9/14/2020
Inverse z-transform
•Synthetic Division Method
•Partial Fraction Method
•Cauchy’s Integration Method
9/14/2020
Synthetic division Example(1)
1
1 az
1
X (z)
1 az
1 1
1 az
1
1
az
1
az
1
a
2
z
2
az
1
a
2
z
2
a
2
z
2
a
3
z
3
a
3
z
3
•Since ROC is |z| >a, x[n] is causal
sequence or right sided sequence.
•Quotient series should have –ve
powers of z as z-transform of causal
sequence has –ve powers of z
a
2
z
2
a
4
.....} a
2
a
3
x[n] {1 a
| z || a |
9/14/2020
Synthetic division Example(2)
1
1 az
1
X (z)
az
1
1 1
1 a
1
z
a
1
z
a
1
z a
2
z
2
a
1
z
a
2
z
2
a
2
z
2
a
3
z
3
a
3
z
3
•Since ROC is |z| >a, x[n] is anti-causal
sequence or left sided sequence.
•Quotient series should have +ve powers
of z , as z-transform of anti-causal
sequence has +ve powers of z
0 .......}
a
1
a
2
x[n] {....... a
3
| z || a |
a
2
z
2
a
3
z
3
9/14/2020
Problem
9/14/2020
Solution (a)
2 2 1
3 z
1
1 z
2
X (z)
1
ROC :| z | 1
As |z|>1, x[n] is causal sequence
1 2
1
3
2 z
1
2 z
1
1
1 2
1
3
2 z
1
2 z
2
3 z
1
4
7 z
2
8
15 z
3
16
31 z
4
3 z
1
1 z
2
2 2
3 z
1
9 z
2
3 z
3
2 4 4
7 z
2
3 z
3
4 4
4 14 8
7
21
7 z
2
z
3
z
4
......}
31
16
15
8
7
4
3
2
15 z
3
7 z
4
8 8
x[n] {1
9/14/2020
Solution (b)
2 2 1
3 z
1
1 z
2
X (z)
1
2 ROC :| z |
1
As |z|<1/2, x[n] is anti-causal sequence
1
3
2 z 1
1 z
2
2 1
1 3z 2z
2
3z 2z
2
2z
2
6z
3
14z
4
62 30 14 6 2 0 0}
x[n] {......
30z
5 62z
6
9/14/2020
Z-transform Pairs
9/14/2020
Z-transform Pairs
9/14/2020
Z-transform Pairs
9/14/2020
Partial Fraction Method
2 1
1 6z 8z
4 8z
1
H (z)
(1 4z
1
)(1 2z
1
)
4 8z
1
1 2z
1
A
2
1 4z
1
A
1
H (z)
4
1
z
1
1
1 2z
4 8z
1
A
1
2
8
1 8
z
1
1
1 4z
1
4 8z
1
6
(1/ 2) 12 A
2
8
12
1 2z
1
1 4z
1
H (z)
Taking IZT ,we get h[n] [12(4)
n
8(2)
n
]u(n)
Partial Fraction
Expansion
9/14/2020
Different Pole’s Cases
a)Distinct Real Poles
b)Complex Conjugate and Distinct Poles
c)Repeated Poles
9/14/2020
Distinct Real Poles
D(z)
H (z)
N (z) Where N(z) and D(z) are polynomials of order m
and n respectively
If m<n,
N (z)
(z p
1 )(z p
2 )(z p
3 ) .......(z p
n )
H (z)
A
n A
3 A
1 A
2
(z p
n )
....
(z p
1 ) (z p
2 ) (z p
3 )
H (z)
where A
k (z p
k )H (z)
z p
k
If m>=n, use division
D(z)
H (z) Q
N (z)
such that m’<n, if not repeat division
Q- Quotient
N(z)- remainder
D(z)- Divisor
9/14/2020
Problem
9/14/2020
Contd..
9/14/2020
Complex-Conjugate & Distinct Poles
(z 2)(z
2
2z 5)
z(z
2
2z)
X (z)
(z 2)(z
2
2z 5)
2z z
2
z
X (z) z
2
2z
(z 2)(z 2 j1)(z 2 j1)
A
3 A
1 A
2
z
X (z)
z2
(z 2 j1)(z 2 j1)
2z
(z 2) (z 2 j1)
z
2
A
1
(z 2 j1)
0
z
2
z (2 j1)
(z 2)(z 2 j1)
2z
A
2
j
2
1
3
z
2
z(2 j1)
(z 2)(z 2 j1)
2z
A
j
2
1
9/14/2020
Contd..
9/14/2020
Repeated Poles
r
k
q
k
A B
k 1 z p
k k 1 z p
k
H (z)
where q no. of distinct poles and not repetitive
r no. of repetition of repetitive pole
A
k is calculated by method as described earlier
B
k is calculated by following equation
r
i k z p
j
d
r k
B (z p ) F (z)
(r k )! dz
r k
1
9/14/2020
Problem
(z 1)(z 2)
3
z(z
2
9)
H (z)
9/14/2020
Cauchy’s Integration (Residue) Method
9/14/2020
Problem
(z 1)(z 2)
10z
X (z)
(z 1)(z 2) (z 1)(z 2)
10z 10z
n
z
n1
G(z) X (z)z
n1
G(z) has two poles ,z =1 & z=2
x(n) = Residue of G(z) at z=1 + Residue of G(z) at z=2
10
1 2
10.1
n
z 1
(z 1)(z 2)
10z
n
R
z 1 (z 1)
1
10.(2)
n
10z
n
10.(2)
n
(z 1)(z 2)
R (z 2)
z 2
z 2
x(n) 10 10(2)
n
9/14/2020
Problem
9/14/2020
Problem
9/14/2020
Quiz
Find IZT for following z-transforms
1
(z 1)(z 0.5)
X (z)
(1 e
a
)z
X (z)
(z 1)(z e
a
)
9/14/2020
z-transform properties
9/14/2020
Contd..
9/14/2020
Contd..
9/14/2020
Problem on Properties 1-8
a
n
u(n) 1) Find z-transform of
We know
1
1 z
1
u(n)
z
a
n
u(n)
z
U (
z )
a
and Property 3
1
)
1
a 1 (
z
a
n
u(n)
z
1
1 az
1
9/14/2020
Contd..
2) Find IZT of X (z) log(1 az
1
)
|z|>|a|
We know
2
x
3
x
4
3 4
log(1 x) x
x
2
(1) .....
n1
n1
n
x
n
(1)
1 n
n1 (az )
n
X (z) log(1 az
1
)
n
a
n
n1
(1)
n1
z
n
a
n
n
n1
n
u(n 1) z (1)
n1
n
Comparing above equation with z-transform definition,
n
X (z) x(n)z
n
we get
a
n
x(n) (1)
n1
u(n 1)
n
0
n x ( n )
( 1)
a
n
n 1
n 1
otherwise
9/14/2020
Contd..
9/14/2020
Contd..
We know , property of differentiation in z domain
ROC R
nx[n]
z
Z
d
( X (z))
dz
If x[n]
z
X (z) with then
Thus we have
1
1 az
1
a
n
u(n)
z
1
dz 1 az
1
na
n
u(n)
z
z
d
1
(a.(1).z
2
)
(1 az
1
)
2
z(1)
1 2
(1 az )
az
2
z
1 2
(1 az )
az
1
9/14/2020
Contd..
9/14/2020
Contd..
(1 az
1
)
3
2a
2
z
1
n(n 1)a
n1
u(n 1)
z
2
1
a
2
z
1
n(n 1)a
n1
u(n 1)
z
2
1
(1 az
1
)
3
(1 az
1
)
3
z
1
n(n 1)a
n1
u(n 1)
z
Multiply by 1/2
Divide by a
2
If a=0.5, we get
1
)
3
(1 0.5z
z
1
1 n(n 1)0.5
n1
u(n 1)
z
2
X
1 (z)
------------(2)
Multiply by 3z
-1
in eq. (2) and putting a=0.5, we get
2
3
(1 az
1
)
3
3z
2
(n 1)(n)0.5
n2
u(n)
z
X
2 (z)
x
1 (n)
x
2 (n)
9/14/2020
Problem on Initial & Final value theorem
Find the initial and final value of x(n) ,if
(z 1)(z 0.5)
z(z 2)
X (z)
z(z 2)
x[0] lim
z (z 1)(z 0.5)
We know initial value theorem
x[0] lim X (z)
z
lim
z
2
(1 2z
1
)
z z
2
(1 z
1
)(1 0.5z
1
)
1
(1 0)(1 0)
1 0
x[0]
9/14/2020
Contd..
9/14/2020
Contd..
Find the initial and final value of following functions a) u(n) b) r(n)
Solution (a): we know
1
1 z
1
u(n)
z
u[0] limU (z)
z
1 1
1
1 0
lim
z 1 z
1
1
1 z
1
u() lim(1 z
1
)
z1
1
9/14/2020
Contd..
9/14/2020
Problems on convolution
Find x(n) using convolution theorem if
(z 1)
2
z
X (z)
X (z)
(z 1)
2
(z 1) (z 1)
z z 1
X (z) X
1 (z).X
2 (z)
X (z)
z
1
1
(z 1) (1 z
1
)
Taking IZT ,we get
1
x (n) u(n)
1
(z 1)
X
2 (z)
1
1 z
1
u(n)
z
We know
1
1 z
1
u(n 1)
z
z
1
1
z 1
u(n 1)
z
x
2 (n) X
2 (z)
2
x (n) u(n 1)
9/14/2020
Contd..
Now we know convolution property x (n)* x (n)
z
X (z).X (z)
1 2 1 2
x(n) x
1 (n)* x
2 (n)
u(n)*u(n 1)
u(k)u(n k 1)
k
u(k)
u(-k-1)
n<0,x(n)=0
n=0 ,x(n)=0
n=1 ,x(n)=1
u(1-k-1)
n=2 ,x(n)=2
u(2-k-1)
x(n) nu(n)
9/14/2020
Contd..
Find out convolution of two sequences given below
a)x(n) {2 1 1 0 3}& h(n) {1 2 1}
b)x(n) {1 3 2 1}& h(n) {1 1}
9/14/2020
Contd..
h(n) {1
x(n) {2 1 1 0 3}
2 1}
Solution (a)
z
3
z
5
2z
1
z
2
X (z) 2 z
1
z
2
0 3z
4
H (z) z 2 z
1
Using convolution property
x(n)* h(n) Z
1
{X (z).H (z)}
X (z).H (z) (2 z
1
z
2
0 3z
4
)(z 2 z
1
)
2z 1 z
1
3z
3
4 2z
1
2z
2
6z
4
9/14/2020