Singular matrix

196 views 3 slides Mar 04, 2020
Slide 1
Slide 1 of 3
Slide 1
1
Slide 2
2
Slide 3
3

About This Presentation

Singular matrix


Slide Content

Singular Matrix
If the determinant of a matrix is zero, then the matrix is called a singular
matrix, otherwise non-singular matrix.


Example-8:
If 4 8 6
2 5 3
2 4 3
A=




find A

Solution:

4 8 6
2 5 3
2 4 3
A=


A 5 3 2 3 2 5
4 8 6
4 3 2 3 2 4
= − +


4(15 12) 8(6 6) 6(8 10)A= − − − + −


A 4(3) 8(0) 6( 2)= − + −


A
=12 – 0 – 12

A = 12 – 12

A
= 0

The given matrix is a singular matrix.

Example-9: 55
a singular matrix then find the value of x
2
IF A is
x

=




Solution:
55
2
10 5
0 10 5
5 10
10
5
2
A
x
Ax
x
x
x
x
=
=−
=−
=
=
=