SlidePub
Home
Categories
Login
Register
Home
General
Singular Value Decompostion (SVD): Worked example 2
Singular Value Decompostion (SVD): Worked example 2
4,466 views
13 slides
Jan 02, 2022
Slide
1
of 13
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
About This Presentation
It is about a general understanding of SVD with 3x2 worked Example.
Size:
120.77 KB
Language:
en
Added:
Jan 02, 2022
Slides:
13 pages
Slide Content
Slide 1
Singular Value Decomposition (SVD)
Isaac Amornortey Yowetu
December 31, 2021
Slide 2
Example 2
Find the matrices Uand V for the matrix
A=
2
6
6
4
2 1
1 0
0 1
3
7
7
5
2/13
Slide 3
Finding the Singular Values
Solution
A=
2
6
6
4
2 1
1 0
0 1
3
7
7
5
A
T
=
"
2 1 0
1 0 1
#
A
T
A=
"
5 2
2 2
#
3/13
Slide 4
Characteristics Polynomial
det(A
T
A) =
52
2 2
(1)
P(A
T
A) = (5)(2)4 (2)
=
2
7+6 (3)
= (6)(1) (4)
Eigenvalues
1=
2
1=6 (5)
2=
2
2=1 (6)
4/13
Slide 5
Singular Values
1=
p
1=
p
6 (7)
2=
p
2=1 (8)
Singular Values Decompostion of A
=
2
6
6
4
p
6 0
0 1
0 0
3
7
7
5
5/13
Slide 6
Constructing Matrix V
A=UV
T
(9)
A
T
A= (UV
T
)
T
UV
T
(10)
=V
T
U
T
UV
T
(11)
=V
2
V
T
(12)
=VDV
T
(13)
A
T
A=
"
5 2
2 2
#
(14)
6/13
Slide 7
Constructing Matrix V Cont'd
When=6
"
52
2 2
#
=
"
1 2
24
#
(15)
By row reduction form, we have:
"
1 2
24
#
=>
"
1 2
0 0
#
(16)
Forming equations with some variables:
x+2y=0 (17)
Our eigenvector becomes:(2;1)
t
7/13
Slide 8
Constructing Matrix V Cont'd
When=1
"
52
2 2
#
=
"
4 2
2 1
#
(18)
By row reduction form, we have:
"
2 1
4 2
#
=>
"
2 1
0 0
#
(19)
Forming equations with some variables:
2x+y=0 (20)
Our eigenvector becomes:(1;2)
t
8/13
Slide 9
Let Z be the egigenvectors of the various eigenvalues.
Z=
"
2 1
12
#
We normalized each column of Z to get V
V=
"
2
p
5
5
p
5
5p
5
5
2
p
5
5
#
9/13
Slide 10
Constructing U matrix
A=UV
T
(21)
U=fu1;u2g (22)
u1=
1
s1
Av1 (23)
u2=
1
s2
Av2 (24)
10/13
Slide 11
Constructing U matrix
u1=
1
p
6
2
6
6
4
2 1
1 0
0 1
3
7
7
5
"
2
p
5
5p
5
5
#
=
2
6
6
4
p
30
6p
30
15p
30
30
3
7
7
5
(25)
u2=
2
6
6
4
2 1
1 0
0 1
3
7
7
5
"p
5
5
2
p
5
5
#
=
2
6
6
4
0
p
5
5
2
p
5
5
3
7
7
5
(26)
11/13
Slide 12
Find the remaining eigenvector
A
T
X=0 (27)
"
2 1 0
1 0 1
#
2
6
6
4
x
y
z
3
7
7
5
=
"
0
0
#
(28)
Forming equations with the variables:
2x+y=0 (29)
x+z=0 (30)
Our eigenvector becomes:(1;2;1)
t
12/13
Slide 13
Singular Value Decomposition
U=
2
6
6
4
p
30
6
0
p
6
6p
30
15
p
5
5
p
6
3p
30
30
2
p
5
5
p
6
6
3
7
7
5
(31)
A=
2
6
6
4
p
30
6
0
p
6
6p
30
15
p
5
5
p
6
3p
30
30
2
p
5
5
p
6
6
3
7
7
5
2
6
6
4
p
6 0
0 1
0 0
3
7
7
5
"
2
p
5
5
p
5
5p
5
5
2
p
5
5
#
(32)
13/13
Tags
singular value decompostion
svd
eigenvalues
matrix
orthogonal
eigenvectors
orthonormal
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
4,466
Slides
13
Age
1432 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
32 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
35 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
32 views
14
Fertility awareness methods for women in the society
Isaiah47
30 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
29 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
30 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-13)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better