CIDM
A
Regression Analysis: Angle Value versus Rotate Gear
The regression equation is
Angle Value = - 0,380 + 3,74 Rotate Gear
Predictor Coef SE Coef T P
Constant -0,3796 0,1693 -2,24 0,042
Rotate G 3,744 1,153 3,25 0,006
S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9%
Analysis of Variance
Source DF SS MS F P
Regression 1 0,24032 0,24032 10,55 0,006
Residual Error 14 0,31905 0,02279
Total 15 0,55937
Unusual Observations
Obs Rotate G Angle Va Fit SE Fit Residual St Resid
2 0,230 0,4000 0,4815 0,1070 -0,0815 -0,77 X
7 0,130 0,5000 0,1071 0,0407 0,3929 2,70R
Regression Analysis: Angle Value versus Rotate Gear
The regression equation is
Angle Value = - 0,380 + 3,74 Rotate Gear
Predictor Coef SE Coef T P
Constant -0,3796 0,1693 -2,24 0,042
Rotate G 3,744 1,153 3,25 0,006
S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9%
Analysis of Variance
Source DF SS MS F P
Regression 1 0,24032 0,24032 10,55 0,006
Residual Error 14 0,31905 0,02279
Total 15 0,55937
Unusual Observations
Obs Rotate G Angle Va Fit SE Fit Residual St Resid
2 0,230 0,4000 0,4815 0,1070 -0,0815 -0,77 X
7 0,130 0,5000 0,1071 0,0407 0,3929 2,70R
-0,2 -0,1 0,0 0,1 0,2 0,3 0,4
-1
0
1
2
N
o
r
m
a
l
S
c
o
r
e
Residual
Normal Probability Plot of the Residuals
(response is Angle Va)
Motor
Gear RotationGear Rotation
Use regression is to express and analyze a mathematical equation of describing a relationship.
That is, it is to fit a mathematical equation of describing a relationship between the “YY” and “X’sX’s”.