Size saperation introduction

bvocmithilesh 7,987 views 54 slides Oct 08, 2018
Slide 1
Slide 1 of 54
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54

About This Presentation

Size saperation introduction


Slide Content

Size Se p aration L a r ge pie c es o f mat e r i al a r e usu a l l y e s timat e d visuall y , diff i cult i es aris i ng o n ly i n the e s t imation of p o w der s . siz e separ at i on i s a uni t op er at i on t h a t invol v e s t h e separa t i on of m i xt u r e of v eri ous siz e of par ti cle s into t w o or mo r e por ti on b y m eans of screenin g sur fa ce . a ls o know n as sie v ing , si ft ing , cl ass i fy in g or screening. Standa r ds fo r P o wders Standards f or p o w ders for pharmaceu t ic a l p urposes a r e l a id d o wn p rin c ipally i n the Indi an Pharmacopoe i a w h ich sta t es, that the deg r e e of coarseness or f i neness of a powder is diff e r en t iated and exp r essed b y t he si z e o f t he m e sh of the sieve th r ough w h ich the p o w d e r is able to pass.

Size Sep a r a tion T h e I P spec i fies f i v e g rades o f p o w d er and t he n u mber o f the si e ve th r ough w hich all the part i cles must pass. Grade of po w der Sieve th r ough w hich all part i cles must pass Coarse 10 Mode r ately coa r se 22 Modera t ely f ine 44 Fine 85 V ery fine 120

T h e I P specifies a s ec o nd, small e r si z e of si e ve for the c oarser p o w d ers b ut sta t es the not mo r e than 40 p er cent sha l l pass th r oug h . T h e r elev a nt grades of p o w d er and si e ve number a r e sh o wn in the tabl e : G r a d e of p o wder Sieve th r o u gh which all p a rticles must p a ss Sieve th r o u gh which n o t mo r e th a n 4 per cent of particles p a ss C o arse 10 44 Modera t ely coarse 22 60 Modera t ely f i ne 44 85 Fine 85 Not spec i f i ed V ery f i ne 120 Not spec i f i ed

Thus, the f ull defin i t i on of C oarse Pow d er is that : It is powder a l l the part i cles of which pass throu g h a No. 10 s i eve and not more than 40 percent through a No. 44 s i eve, th i s is usua l ly referred to as a 10 / 44 powder. O t her grades are expre s sed in a si m i l ar way.

T h e Indi an Pharmacopoe i a makes t w o sta t em e nts w i t h r e g ard to these `o f f i cial' grades of po w ders in practic e : It is r equi r ed that, when a p o w d e r is desc r ibed b y a numbe r , all part i cles must pass th r ough the spec i f i ed si e v e . When a ve g etab l e drug is being g r ound a n d si f ted, none must b e r ejec t ed. T h e r eason for this w i ll b e ap p a r ent if the charac t er o f a vege t a b le drug is compa r ed w i t h a chemic a l substanc e . T h e la t ter is a homogeneous ma t eri a l s o that, if a cert a in quanti t y , o f a powd e r is r equi r e d, a n excess may b e g r ou n d, a su f fic i ent amount of t h e desi r ed si z e range obtained b y si e v ing, and the oversi z e part i cles ( k no w n as ta i l i ngs) may b e discarde d . •

A veget a b l e dru g , h ow e ver, con s is t s o f a v a riety of ti s sues o f di f feren t degree s o f har dn es s , s o t h at s o fte r tissue s w il l b e grou nd f i r st and t a i l in g s o b t a ined b y si f t ing wil l c o n t ain a h i gher prop or ti o n o f th e harder ti s sues. In many ca s es, constit u e nts are not d i stribu t ed uniformly t h ro u gh v e g e t a ble tissue s ; fo r ex a mple, in d i gi t al i s th e g l yc o s i d e s are c o nc e n t ra t ed in t he mid-rib and v e in s . Hen c e, if t a ilings a re d i sca r ded whe n grinding and sift i ng th e drug , it is likel y tha t a h i gh prop o rtion o f t h e ac tive constit u e nts w il l b e lost.

In addi t io n to t he grades of p o w der spe c if i ed by t he B r it i sh Pharmaco p oei a , t he B r it i sh Pharmaceut i cal Cod ex det ails a f urther grade k n o w n as Ultr a -fi n e Po w de r . In t h is case, it is r equi r ed t hat t he ma x imum dimen sio n of at least 90 pe r c e nt of the p articl e s must be n ot g r eater t han 5 µm an d n o ne mu st be g r eater t han 50 µm. Det e rmina t io n of p a rticle si z e fo r t h is grade is car r ied ou t by a mic r o s cop i c meth o d.

Sieve s fo r test Br i t i sh Standar d . p u rposes a r e the s u bject o f a Mos t o f t he sieves used a re o f the wire mesh typ e , the numbe r o f the sieve ind i cati n g the numbe r of meshes i nc l ude d i n a length o f 25 . 4 mm ( 1 in c h) i n each direc t i o n paralle l t o th e w i re s . Si e v e s

I t s h o ul d be n ot e d t ha t i t i s t he Th u s, a No. 1 sie v e h as 10 m es h e s p e r inch in e a c h dir e cti o n, but i t will be realiz e d that i f th e re were 10 wi r e s t her e w o ul d b e 9 m e shes onl y . T h e si mp l e state m e n t of th e numb e r of m es h e s p er uni t le ngt h is no t s uffici e nt , h o we v er, as t h e s ize of th e partic l e that w i ll pa s s th e sie ve will d e p e n d on othe r fa c tor s , principall y th e diam e ter of th e wi r e numb e r of m e sh es that is s p e c ifi e d wi r es. and no t t h e n um b e r of

Effect of w i r e di a meter on sieve mesh si z e.

STAN D ARDS FO R SIE V ES according to B. P . I t i s re q u i red that wi r e- m e sh sie v e s shall be m a de fro m w i r e o f u niform , cir c ul ar cr o s s - s e ctio n and for e a ch sieve th e followin g particular s are stated: N u m b e r o f S i e v e Thi s is th e numbe r o f meshes in a length of 25 .4 m m (1 in .) , in e a ch dir e ction, paralle l to th e wi r es.

N o m i nal S i z e o f A p e r t u re ( h o l e ) Thi s is t he distanc e betwe e n the wires, so that i t r epr e sents the length o f the side o f the s q uare apertur e. Nomi n al D i a m et e r o f the Wire Thi s dimens i o n and the numbe r o f me shes f o rm the basic standar d s fo r the sieve. Th e wire diamete r ha s b e en selec t ed to giv e a sui t ab l e aperture size, but also t o hav e suf f i cient strength to avoid disto rti o n .

Ap p roxi m ate Screeni n g Are a . Th i s s t andard e xpr e sses the area o f the m e shes as a percent a g e of the t o tal area o f the sieve. It is governe d b y the size o f wire use d fo r any parti c ula r sie v e numbe r and is k e p t wit h in the range 3 5 to 4 per cent . Th i s give s sui t able strength to the sieve, but leaves ade quat e area o f meshes sin c e these are o b v i ou s ly the use f u l area o f the siev e .

A p e r ture T o l er a nce A v e r age Som e var i ation i n t h e apert u re size is unavoid a bl e and th i s variati on , express e d as a p e rcentage, is known as the aperture t o lerance average. Th e term tolera nc e is use d i n engineer ing p r act i c e to mean the l i mits wit h in whi c h a part i c u lar quanti t y o r dimensi o n ca n b e al l owe d to vary a nd st i ll b e ac c eptab l e fo r the purpos e fo r wh i c h i t is require d.

Fi n er wires are l i k e ly t o b e subject to a gr e ater proport i ona l variati o n i n diamete r than c o ars e. f i n e me s he s canno t b e woven with the s a me accuracy as c o arse meshe s. Hence , t h e apertu r e toleran c e ave r age i s smal l er fo r sieves o f 5 o r 10 mesh than is the cas e fo r 30 mesh.

PERFO R ATED PL A T E SIEVES Sieve s ma y also b e made b y drill ing h o les i n m etal plate , s o that t hi s type w i ll hav e c i rcu l ar apertures as agai n st the square a p e r tures o f the wire mesh siev e. In gene r al, these sieves a re use d i n the larger sizes and ca n b e m ade with gr e ater a c c urac y t han w i re - mesh sieves, as susceptible to di st ortion w ell as be i n g less i n us e. Th i s type is c o mmonly use d also as screens i n impact mi l l s .

Usuall y , the ho l es are spaced with their centers arr a nge d at the a pice s o f equilateral triangles, so that all the apertures are equidistant A Per f orat ed plat e s i eve.

Simil ar standar d s a re la i d dow n with the appr o priate equivalent specifications for nom i na l width o f the br i d g e (dim e ns io n A plat e th i cknes s a n d i n the Figure ) whi c h c ont rol the strength o f t h e sieve i n the same way as wire diamete r i n wire mesh sieves.

M ateri a l s U s e d f o r S i e v e s Th e wir e sho u ld be of u n i f o r m , circu l ar cros s -se ctio n . T h e mater i al sho u ld hav e s u it a bl e st r ength to avoid disto r ti o n B e re s ista n t t o c o r r o s i on by a n y s ubst a nces that may be sif t e d.

M E TALS I r on wire Adv a ntage che a p, Disa d va ntage • R u sti n g • I r on cont a m i nation o f prod u cts

M E TALS  Co a ted Iron ( c oatin g with galvanizi ng or tin n ing ) . Adv a ntage Increases the pro t e c ti o n ag ainst cor r osi o n I n crease s t h e stre n gth Disa d va ntage Coating afte r m a n u f a ctu r e l e ad to some variat ion i n the m e s h size .

M E TALS  Copp er Adv a ntage Avo i di n g the ri s k o f iron cont a m i nation D i sa d vantage A s a s o f t m e t a l, m e sh e s can be disto r te d e a sily .

M E TALS Copper A ll o ys ( bras s and ph o sphor -bro n ze) Advan t ages Rese m ble copp e r i n p o s s e s sin g goo d resistanc e to cor r osi o n T h e ir stre n gt h i s greate r so t h at le s s r i sk o f the m e she s disto r ti o n .

M E TALS Stain l es s Steel Advantages Good resi s t a nc e t o corr osion Adequat e st r e n g t h T h e m o s t sui t able f or pha r m ac e utic a l purpose s . Disa dvantages E x pensive

NO N - M E TALS Used whe n all ri sk o f m e tall i c cont a m i nation be avoided . Used fo r s ieves wit h fin e m e s h e s , s i nce non -me tal f i ber s are stro n g e r than a m e tal wi r e o f simi l ar t h ick n es s .

NO N - M E TALS Ma terials of na tura l or i gin ( hair an d sil k ) , are us e d bu t synt h etic fib e r s ( nylon an d teryl e n e ) are m o r e su it a ble Advan t ages o f synt h eti c fib e rs Hav e m o re stre n gth and resi st a nc e to c o rro si on. can be extruded in all diameter s , so be enabl i ng mad e. a wide vari e ty of s i eve s to

S i e ving M e th o ds Si e ves shou l d be u s e d an d st or e d with car e, s i nce a s i ev e i s of l i t tl e value i f t h e meshe s b e c om e damag e d or di s tor te d. With t h e exc e pt i on of the sho u ld us e of never s i ev e s for gran u l a tion, ma t er i al t h rough a s i ev e . be fo r c e d Par t icle s, i f sm all enough , wi l l pas s t h rough a s i ev e ea si l y i f i t i s shak e n , t app e d , or brushe d .

I. ME C H A NIC A L SIEVING M E THODS Princip l e: B a se d o n method s as : Agita tion Brush the sieve Use centrifuga l force

1. Agitatio n Methods Si e ves ma y be agita ted i n a n u mb e r of diffe r en t way s: O s c il l a t ion ( m o ve bac k and forth) The si e ve i s mo u n ted i n a frame t h at o s c i l l a t in g. Advan t ages Si m pl e m et h od Di s adv a n t ages The materia l m ay ro l l on t h e surfac e o f t h e s i ev e , and fibrous mater i als tend to “ bal l ”.

Vi brat ion The m e sh is vibra ted at high s p e e d, often b y an e l e c trical d evi c e. Advan t ages The rapid vibration i s i mparted to t h e par t icle s on t h e s i eve and t h e part icle s are le s s l i k e ly to “blind” t h e m e sh.

2. Brushin g Methods A brush can be u s e d t o m ove t h e part icle s o n t h e surfac e of t h e s i ev e an d t o k e ep t h e m e sh e s c l ea r. A s i ngl e brush acro s s t h e diamete r of an ord i nary c i rcula r s i e ve, r o tating a bou t t h e m i d- point , is effe c tiv e; In larg e - s c ale pr o duction a horizonta l cy l indri cal s i e ve is empl oyed, with a s pira l bru s h rot a ting on t h e l o ngitudina l a x is of t h e s i ev e .

3 . Centrifuga l Methods Use a ver t ic al c yl i ndri c al s i ev e with a high speed roto r ins id e t h e c yl i nder , s o t h at part icle s are t h row n out w ards by c e n trifuga l forc e . The curr e nt of a i r cr e a ted by t h e m ove me n t he l p s s i ev i n g. Espe c ially i s us e fu l with very fin e powd e r s .

Industria l m ethods o f pa r t i c l e size separati o n based o n sedimentation o r o n elutr i ati o n . W et siev i n g is more eff i c i ent than the dry process, be c ause pa rt i c l es a re suspende d passin g easily t h rough t he r eadily and with l ess sieve bl ind i n g o f the meshes. II. WE T S I E VING ME TH O DS ( FLUI D C L A S SI F ICA T IO N )

A su s pe n sion o f the sol id s in a flu id , most c om m only wat er, is pla c ed in a tank and allowed to stand fo r a su i table tim e. Th e uppe r layer is then remov e d , givin g a s ingle separation, o r the su s pe n sion m a y be c ollect e d as a numb er o f fra c tions by ar r anging fo r the pum p in l et to rem a in j u st b e low the su rfa c e. Th e su s pe n sion pumpe d ou t will then c ontain successively c oarse r particles. SE D IMEN T A TION ME T HO D S 1. Sedimentation T ank

A d vant a ges Simpl e process D i s a dvant a ges • A bat c h proces s on l y It does no t giv e a c l ean spl i t o f pa rt i c l e sizes be c ause s om e sma l l pa rt i c l es wi l l b e near the b ot t om o f the tank at the b eginning o f the pr o ces s and so w i ll b e re move d with the c o arse pa rt i c l e s.

2 . Conti n uou s Sed i me n t a t i on Tank C o ntinuou s sedim e ntati o n tank

Part i c l es e n t e r i n g t h e t a n k wi l l be ac t ed up o n by a fo r c e that ca n b e divide d in t o two components : Hori z o ntal componen t du e t o t h e flo w o f t h e f l ui d t h at car r i es the par t i cl e forward Ver t ical componen t du e t o g r avi t y, w hi c h cau s es t h e par t i cl e t o fal l t o wards the bot t o m o f the t a n k .

T h e latter will d e pe n d o n St o k es' law, s o that the veloci t y of fal l is pr o porti o na l t o t h e di a m eter. Th u s, particl e s will se t tle to th e fl o o r of t h e t a n k at a p o int that d e p e n d s on p a r t icle size, th e c oar s est partic l es b e ing n e a rest t o t h e i nle t a n d th e fi n est n e arest to th e outle t.

I n some t a n ks, par t i t i on s a r e a r r a nged en a bling par t i cul a r size fr a ct i o n s to o n t h e flo o r, b e col l ec t ed cont i n u o us l y. I n o t he r t a n k s, t h e f low i s a r r a nge d so t h at onl y coa r se par t i cl e s will se t t l e out , f i n e p a r t i cl e s be i ng car r i ed t hr o ug h t o the overfl o w an d col l ec t ed e l s e w her e by sed i m e nta t ion o r fi l t r a t io n .

Ad v antag e s • S i mple • Inex p ensive • Continuou s i n op e rat i on • Gives a c l ean se p arat i o n of par t i c l es in t o many size fract ions as required .

3. Cyclon e Separator T h e cycl on e s eparat or c o nsis t s of a cyli n dr i c al ve s s el wi t h a c o nical b a se T h e r otator y f l ow wi t h in th e cyclo n e c a us e s t h e p art icle s t o be a c ted o n by cen t r ifuga l fo rce, s olids b ei n g t hro w n o u t to the walls, t h e n fall i n g t o t h e c o n ical b a se and ou t t hro u g h t h e s o l ids dis c harg e. Cyclone sep a rat o r

T h e sus p ens i on i s in t roduced tangential l y vel o city , so at fai rly high tha t a r o t ary movement tak e s the ves s el, and re move d fro m a at the t o p . plac e within the f l ui d is centra l out let

Th e sepa r a to r i s s t i ll a fo r m of sed i m e nta t i on , b u t wi t h c e nt r i fu g al for c e use d ins t ead o f the g r avi t a t ional force . H e nce , d epend i n g o n t h e f l ui d veloc i t y , the c y clon e c a n b e us ed t o sepa r a t e all par t i cl e s o r t o r e m o ve onl y c oar ser par t i cl e s a n d al l o w f i n e par t i cl e s t o be ca rr i e d th r oug h wi t h th e flu i d . C y clone s ca n be u sed wi t h l i quid m ost s u sp e ns i o n s o f so l i d s , b u t t he com m o n app l ica t ion i s wi t h su sp e nsi on s o f a sol i d i n a gas , usuall y ai r .

4 . Mechan i ca l Air C lassifier M e chani ca l air separati o n methods us e sim i lar principle s to the cy c l o n e separ a t o r, but the air moveme n t i s o b t a ined b y m eans o f a rotat i n g dis c and vane s , and separation is improved b y the u s e o f stat ionar y vanes.

By c o ntr o l l i n g t h e se van e s and the s p e e d of r otatio n , i t is p o ssible to vary th e size at which separation o c c urs . T h e m e t h od i s u s e d i n c o njun ctio n and re t urn for furt h er s ize with mills to s e parate ove r si z e reductio n . particl e s

E L U TRI A TION M E TH O DS Elutri ati o n d e p e n d s o n t he move m ent of a fluid ag a in s t the di rectio n o f s e di m e nt ati o n o f the particle s . Fo r th e gr a vitational s y s t e m , t he apparatus c o n sists si mpl y of a vertical c olu mn w i th ne ar th e bottom a n in l et for th e su s p ensi o n , an o utlet at the base for c oa r s e partic le s, overf l ow ne ar th e t op and fine particle s . and an for f l u id Flu i d a n d fine p a rtic l es Suspens i on Co arse par t icles

O n e c o l u mn wi l l giv e a single s e paratio n into t wo fra c tions, but i t m u st be re m e m b er e d that this will n ot g i ve a clean c ut , s in c e there i s a velocity gradi e n t a c ross th e tube, resulti n g i n t h e s e p aration of particl e s of differ e n t si z es a c c ordi n g to t h e d i s t ance from th e wall . Elutri ati o n Flu i d a n d fine p a rtic l es Suspension Co arse p a r ticles

I f more t ha n o n e f raction i s re q uire d , a numb er of tub e s of increa s ing area of cr o s s -s e c tion can be c o n ne ct e d in series. With t h e s a m e overal l flo w - rate, th e v e l o ci t y will d e c r e a se i n su cce e d i n g t ube s a s the area of cross - sec t io n i ncre a s e s, g i vin g a numb er of fra c tion s . Mul ti -stage elutr i ator (1) to ( 4) a r e frac t ions of dec r eas i ng part i cle si z e

Advant a ges Th e proces s is c ontin u o us. Th e sepa r ation is quicke r than wi t h sed i mentation D isadva n tages T h e s u s p e n sion ha s to sometimes be undesi rabl e. be dil ute; w hi c h may

APPLIC A TIONS OF SEDIME N T A TION AN D ELUTR I A TION B o th metho d s ar e u s e d for si m i lar purp o se s, us u al ly foll o wi n g a size r ed u ction proc e s s , with the o bject o f s ep a rat i ng ov e rsize p a rt i cles , w h ich m a y b e r eturn e d f or further grin d in g , use d for o ther pur p os e s , o r d iscarded ac c ording to the circumstances .

W ith liquids ; t he te c hn i qu e s ar e a ppl i ca ble to inso l uble s olid s , s uch as ka olin or ch alk, w hich a r e oft e n s u b j ec t e d t o w e t grinding f ollo w e d by sedimentation or elutriation w ith w ate r . W ith ga s e s , the m eth o ds ar e ap plic a ble to f i ner solids t hat w ould se p arate t o o slo w ly i n li q uids, to w at er- so lu ble su b s t a nc e s , or where d r y proce ss i n g is requ i re d. T h us, a c y c l one or mechanical air separa t or is o f ten incor p orat e d in circ u i t w ith a ba l l mi l l or h am m er mi l l to se p arate and return ov e rsi z e particles.

S u spen d e d TRISO f ue l p a rticle s in the ho p pe r for se par a tion and individual transport

Cros s -sec t ion diagr a m of hopper sho w ing pl a cemen t of pneu m atic transf er line and selecte d sensor s for p a rticular TRISO f ue l a p plication