slides_security_and_privacy_in_machine_learning.pptx

ssuserabf73f 12 views 59 slides May 01, 2024
Slide 1
Slide 1 of 59
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59

About This Presentation

.


Slide Content

N i co l a s P a p e r n ot P e nn s y l v a nia S t a t e U ni v e r s i t y & G oogle B r a in L ec t ure for P rof. T r e n t J a e g e r ’ s C SE 54 3 C ompu t e r Se cur i t y C l a s s N ov e mb e r 201 7 - P en n S t a t e

( P e n n S tate) ( Googl e Bra in ) M a r t ín Ab ad i ( Goog l e B r a in ) Som e s h J h a ( U of W i s con s in ) T h a n k you t o my co ll a bor a t ors 2 A l e x e y K ur a k i n ( Goog l e B r a in ) X i Wu ( Goog l e )

3 M a c hin e L ea r nin g Classi f ie r . 01 . 84 . 02 . 01 . 03 . 01 p(0 | x , θ) p(1 | x , θ) p(2 | x , θ) p(7 | x , θ) p(8 | x , θ) p(9 | x , θ)

M a c h in e L e a r n in g C l a ss i f i e r cos t/ loss f unc t ion ( ~ model error) 4

O u t lin e of t hi s le c t ure 1 2 5

P a rt I S e cur i t y i n m a c h in e le a r n in g 6

b a d eve n i f a n a tt a c k e r need s t o k n ow de t a il s of t he m a c h in e le a r n in g mo d e l t o d o a n a tt a ck -- - a k a a w h i t e - b ox a tt a c k er wor s e i f a tt a c k e r w h o k n ows ve ry li tt l e ( e .g. o n l y g e t s t o a s k a f e w qu e s t i o n s ) c a n d o a n a tt a ck -- - a k a a b l a c k - b ox a tt a c k er ML A t t a ck Mo d el s 7

A t t a ck Mo d el s b a d eve n i f a n a tt a c k e r need s t o k n ow de t a il s of t he m a c h in e le a r n in g mo d e l t o d o a n a tt a ck -- - a k a a w h i t e - b ox a tt a c k er wor s e i f a tt a c k e r w h o k n ows ve ry li tt l e ( e .g. o n l y g e t s t o a s k a f e w qu e s t i o n s ) c a n d o a n a tt a ck -- - a k a a b l a c k - b ox a tt a c k er ML 8

A d v e r s a r i a l e x a mp l e s ( w h i t e - box a tt a c k s ) 9

J a cob i a n - b a s e d S a lien cy M a p A ppro a ch ( J SMA) a t ions of Deep Learning in A dversarial S e tt ings 1 P apernot et al. T he Limit

J a cob i a n - B a s e d I t e ra t i ve Appro a c h : s o u r ce - t a rg e t m i s c l a ss i f i c a t ion 1 1 P apernot et al. T he Limi t a t ions of Deep Learning in A dversarial S e tt ings

Ev a din g a N e ur a l N e t work M a l w a re C l a ss i f i e r P [ X = Beni g n ] = . 1 P [ X * = B e ni g n ] = . 9 1 2 G rosse et al. A dversarial P er t urba t ions A gainst Deep Neural Ne t works f or Malware Classi f ica t ion

Sup e rv i s e d v s . r e in forc e m e n t le a r n in g 1 3 Sup erv i sed l ear nin g Re in f o rceme n t l ear nin g M od el inpu ts O bserva t ion (e . g . , t ra ff ic sign, music, email) E nvironment & Reward f unc t ion M od el ou t pu ts Class (e . g . , s t op / yield, jazz / classical, spam / legi t ima t e) A c t ion T ra inin g “ go a l ” ( i. e . , c o st /lo ss) Minimize class predic t ion error over pairs of (inpu t s, ou t pu t s) Maximize reward by exploring t he environment and t aking ac t ions E xam pl e

A d v e r s a r i a l a tt a c k s on ne ur a l ne t work po l i c i e s 1 4 Huang et al. A dversarial Att acks on Neural Ne t work P olicies

A d v e r s a r i a l e x a mp l e s ( b l a c k - box a tt a c k s ) 15

T h r e a t mo d e l of a b l a c k - box a tt a ck 16

O ur a ppro a ch t o b l a c k - box a tt a c k s A llevia t e lack of knowledge about model 17 A llevia t e lack of t raining da t a

A d v e r s a r i a l e x a mp l e t ra n s f e ra b i li t y T he s e prop e r t y com e s i n s e v e ra l v I n t ra - t e c h n i que t ra n s f e ra b i li t y: a r i a n t s : C ro s s mo d e l t ra n s f e ra b ili t y C ro s s t ra i n i n g s e t t ra n s f e ra b ili t y C ro s s - t e c h n i que t ra n s f e ra b i li t y ML A 18 S zegedy et al. I n t riguing proper t ies of neural ne t works

T he s e prop e r t y com e s i n s e v e ra l v I n t ra - t e c h n i que t ra n s f e ra b i li t y: a r i a n t s : C ro s s mo d e l t ra n s f e ra b ili t y C ro s s t ra i n i n g s e t t ra n s f e ra b ili t y C ro s s - t e c h n i que t ra n s f e ra bi li t y ML A ML B Vi ct i m A d v e r s a r i a l e x a mp l e t ra n s f e ra b i li t y 19 S zegedy et al. I n t riguing proper t ies of neural ne t works

2 A d v e r s a r i a l e x a mp l e t ra n s f e ra b i li t y

C ro s s - t e c h ni que t ra n s f e ra b i li t y 21 P apernot et al. T rans f erabili t y in Machine Learning: f rom P henomena t o B lack- B ox Att acks using A dversarial S amples

C ro s s - t e c h ni que t ra n s f e ra b i li t y 22 P apernot et al. T rans f erabili t y in Machine Learning: f rom P henomena t o B lack- B ox Att acks using A dversarial S amples

O ur a ppro a ch t o b l a c k - box a tt a c k s 23 A llevia t e lack of t raining da t a A llevia t e lack of knowledge about model

A t t a c k in g r e mo t el y h o s t e d b l a c k - box mo d el s Rem o te ML sys 24

Rem o te ML sys A t t a c k in g r e mo t el y h o s t e d b l a c k - box mo d el s 25

2 Rem o te ML sys A t t a c k in g r e mo t el y h o s t e d b l a c k - box mo d el s 6

Rem o te ML sys A t t a c k in g r e mo t el y h o s t e d b l a c k - box mo d el s 2 7

O ur a ppro a ch t o b l a c k - box a tt a c k s 2 8 A llevia t e lack of knowledge about model A llevia t e lack of t raining da t a

R e s u l t s on r e a l - wor l d r e mo t e s y s t e ms 2 9 [P M G 16a] P apernot et al. P rac t ical B lack- B ox Att acks against Deep Learning S ys t ems using A dversarial E xamples R em o t e Pla t fo r m M L te c h ni qu e N umbe r of quer i e s A dv er sa r ial ex a mp l e s m isclassifi e d (af te r query in g ) Dee p L ea r nin g 6 , 40 84 . 24 % Log isti c Re gr essi on 80 96 . 19 % U nkn own 2 , 00 97 . 72 %

Ben c h m a r k in g progre s s i n t h e a d v e r s a r i a l ML commu n i t y 3

3 1

Grow i n g commu n i t y 1 . 3 K + s t a rs 340 + fork s 40 + con t r i bu t ors 32

33

3 4 A d v e r s a r i a l e x a mp l e s a re a t a ngible in s t a n ce of h ypo t he t i c a l AI s a f e t y prob l e ms I mage source: h tt p :// www . nerdis t. com / wp-con t en t/ uploads / 2013 / 07 /S pace- O dyssey-4 . jpg

P a rt I I P r i v a cy i n m a c h in e le a r n in g 35

T yp e s of a d v e r s a r i e s a n d our t h r e a t mo d e l I n o u r w o r k, t h e t h r e at m od e l ass u m e s: A d v e r s a ry c a n m a k e a po t e n t i a ll y u n bou n d e d n umb e r of qu e r i e s A d v e r s a ry h a s a cc e s s t o mo d e l i n t e r n a l s Mo d e l qu e ry i n g ( b lack- b ox adv e r sa r y ) B lack-box ML 36

A de f i ni t i on of pr i v a cy 37

O ur de s i gn go a l s 38

T h e P AT E a ppro a ch 39

T e ac h e r e ns e m b le Se n s i t i ve D a t a 40 Pa r titi on 1 Tea c he r 1 Pa r titi on 2 Tea c he r 2 Pa r titi on n Tea c he r n Pa r titi on 3 Tea c he r 3

A gg r e g a t ion 41

I n tu i t ive p r ivacy anal y sis 42

Noisy a g g r e g a t ion 43

T e ac h e r e ns e m b le P a r t i t i on 3 T e a c h e r 3 Aggr e g a t e d T e a c h e r Se n s i t i ve D a t a 44 Pa r titi on 1 Tea c he r 1 Pa r titi on 2 Tea c he r 2 Pa r titi on n Tea c he r n

S t u d e nt tr aining P a r t i t i on 3 T e a c h e r 3 Aggr e g a t e d T e a c h e r Se n s i t i ve D a t a 45 Pa r titi on 1 Tea c he r 1 Pa r titi on 2 Tea c he r 2 Pa r titi on n Tea c he r n S t u den t P ub li c Dat a

W h y tr ain an addi t ional “ s t u d e n t ” m od e l? 1 2 46

S t u d e nt tr aining P a r t i t i on 3 T e a c h e r 3 Aggr e g a t e d T e a c h e r Se n s i t i ve D a t a 47 Pa r titi on 1 Tea c he r 1 Pa r titi on 2 Tea c he r 2 Pa r titi on n Tea c he r n S t u den t P ub li c Dat a

D e p lo y m e nt 48 S t u den t

D iff e r e n t ial p r ivacy anal y sis 49

E x p e r i m e n t a l r e s u l t s 50

E x p e r i m e n t al s e t u p 5 1 Dataset T eac h er M od el S t ud e n t M od el MN IS T Convolu t ional Neural Ne t work G enera t ive A dversarial Ne t works SV HN Convolu t ional Neural Ne t work G enera t ive A dversarial Ne t works UCI A dul t Random F orest Random F orest UCI D i a b etes Random F orest Random F orest / /model s /tree/master/differential_privacy/multiple_teachers

A gg r e g a te d t e ac h e r acc u r acy 52

T r ad e - off b e t w een s t u d e nt acc u r acy and p r ivacy 53

T r ad e - off b e t w een s t u d e nt acc u r acy and p r ivacy 54 UCI D i a b etes ᷑ 1 . 44 ᶖ 1 -5 N on - p r i vate b ase lin e 93 . 81% S t ud e n t acc u racy 93 . 94%

Sy n e rgy b e t w e e n p r ivacy a n d g e n e r ali z a t ion 55

www.p a p er no t . fr @N i c ol as P a p er no t 56

57

Gr a dien t m a s k in g 58

Gr a dien t m a s k in g 59
Tags