SN 1&SN 2 reactions

17,981 views 17 slides May 07, 2017
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

brief discussion of SN reactions of alkyl halides


Slide Content

Presentation For ChemistryPresentation For Chemistry
Assigned By : Assigned By : Mr.ShahbazMr.Shahbaz
Topic: Nucleophilic SubstitutionTopic: Nucleophilic Substitution
Presenter: Mahr Muhammad UmarPresenter: Mahr Muhammad Umar

Alkyl halides - Hydrocarbons with
• Halogen attached (F, CI, Br, I)
• (1°, 2°, 3°) halogenoalkane - number of alkyl groups attach to carbon bonded to
halogen
• Polar bonds due to high EN of halogen

Nucleophilic Substitution -
• Nucleophile (non bonding electron) attack the partial positive charge carbon
(nucleus)
• Chloride (halogen) - leaving group and substituted by nucleophile
• Nucleophile replace/substitute the halogen

S
N
2
S
N
1

Mechanism of Nucleophilic Substitution (S
N
1 and S
N
2 )
S
N1
  - Substitution Nucleophilic Unimolecular
• S
N
1 -  2 steps, unimolecular ( first order)
• 1st step - slow/rds, Carbocation formation 
• 2nd step - fast, Nucleophilic attack 
carbocation 
• Rate = k [substrate],  First order overall
• Rate depend on conc. substrate 
NOT conc. nucleophile
• Nature of the nucleophile doesn’t
 affect the rate

Stable Intermediate Carbocation
• S
N
1 - produce intermediate carbocation
• Carbocation - positive charged on carbon 
• Carbocation formation -  sp2 hybrid (Trigonal Planar)
• Nucleophile attack from both sides
• Racemic Mixture 

S
N
2 - Substitution Nucleophilic Bimolecular
• 1 step mechanism, Bimolecular collision
• Rate = k[substrate][nucleophile], Second order overall
• Rate depend on conc of substrate and nucleophile
• Bond making/breaking occur together result in trigonal bipyramidal shape
• Inverted configuration (backside attack by Nucleophile)

Tertiary Halogenoalkane - S
N
1      Primary Halogenoalkane - S
N
2
S
N
1 and S
N
2 due to Steric Hindrance and Inductive effect
Tertiary - 3 alkyl gp - S
N
1
• Tertiary - High Inductive/Steric hindrance
• High Inductive effect - 3 alkyl gp
donates/push e towards carbocation
• Stabilizes positive charge on it
• High Steric Hindrance - 3 alkyl gp
hinder/blocks Nu from attacking,
prevent S
N
2
Primary - 1 alkyl gp - S
N
2
• Primary - Low Steric Hindrance/Inductive effect
• Low Steric Hindrance - allows Nu to attack from one side - S
N
2 possible
• Low Inductive effect - 1 alkyl gp, result in less stable carbocation - prevent S
N
1

 Examples for S
N
1 and S
N
2 reactions
S
N
1 reaction, Hydrolysis of 2 -Bromo 2- Methylpropane with warm aq dil NaOH
(CH3)3CBr  +  OH
-
   (CH3)3COH  +  Br
-
Tertiary - S
N

• 2 steps mechanism
• 1st step, slow/rds, Heterolysis (breaking C-Br bond) forming carbocation
• 2nd step, fast, nucleophile OH
-
 reacts with carbocation

S
N
2 reaction, Hydrolysis of Bromoethane with warm aq NaOH
CH3CH2Br  + OH
-
 →  CH3CH2OH +  Br
-
 
• Primary - S
N
2
• One step mechanism
• Bond making/breaking 
simultaneous in transition state

Factor affecting rate of Nucleophilic Substitution (S
N
1 / S
N
2)
1. Nature of Halogen
• Bond length increase, Bond strength 
decrease from CI to I, easier for 
nucleophile to attack by S
N
2
2. Nature of Halogenoalkane
• Tertiary (S
N
1) faster than Primary (S
N
2)
Formation Carbocation (S
N
1) faster than 
formation of transition state (S
N
2)
3. Nature of Nucleophile
• Negatively charged more reactive than 
neutral nucleophile

ANY QUESTION?