ميحرلا نمحرلا ﷲ مسب
ALB
د.م . يدنشب ىلع ءلاع
2014
Dr. Eng. ALaa Ali Bashandy
Assoc. Prof. at Civil Dep., F. of Engineering, Menoufia Unv.
ةيناسرخلا تاطلابلا ميمصت
Design of R. C. Solid Slabs
ﺔﻴﻧﺎﺳﺮﺧ تﺂﺸﻨﻣ ﻢﻴﻤﺼﺗ 1
ALB
أ.م.د . ىدنشب ىلع ءلاع Assoc. Prof. ALaa A. Bashandy
معلا اذھ للاخ نم هيلا فدھأ ام حيضوت ىلع ىنتدعاس ةمولعم وأ ةروص هنم تخسن وأ ترعتسا نم لكل ركشلا ليزج ل
Solid Slabs
One-way S. Slab
Two-way S. Slab
ALB
د. ىدنشب ءلاع
L
long
/ L
short
≥2
L
long
/ L
short
≤2
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
Design
s
t Depth
ALB
د. ىدنشب ءلاع
ـل ىندلاا دحلا ددحي
s
t
ثيحب :
.1 ميخرتلا دودح نع لقت لا deflection
.2 دوكلل اعبت لامحلاا ةمواقمل ىندلاا دحلاب ىفت :
ةيكيتاتسا لامحا ≤8
مس
- ةيكيمانيد لامحأ ≤12
مس
s
A Rfmt Reinforcement
حيلستلا ةميق باسح متي
s
A
فقسلا حيلست صر
ALB
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
ALB
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
For High Tensile Steel (H.T.S)
s
t Estimation of
Simple Slab
Continuous Slab
from tow side
Cantilever Slab Continuous Slab
from one side
10 /
c
L 28 /
s
L 24 /
s
L 20 /
s
= L
min s
t
it is required to check deflection if the span > 10 m
12 /
c
L 35 /
s
L 30 /
s
L 25 /
s
= L
min s
t
it is required to check deflection if the span > 10 m
Simple Slab
Continuous Slab
from tow side
Cantilever Slab
Continuous Slab
from one side
For Mild Steel
For deflection requirements
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
Generally t
s
for one-way solid slabs
10 /
c
L 40 /
s
L 35 /
s
L 30 /
s
= L
min s
t
it is required to check deflection if the span > 10 m
S
L
1.00m
L
strip
Simple Slab
Continuous Slab
From tow side
Cantilever Slab
Continuous Slab
From one side
Static load
→
cm 8 =
min s
t
= 12 cm
→
Dynamic load
but,
not less than
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
W
u
S
(t/m
’)
= 1.5 (D.L
(for slab)
+ L.L.)
L.L
/
D.L
< 75%
1.Dead Load (D.L)
2 2
3
P.C
3
R.C
R.C
Concrete R. Concrete
t/m 0.15 kg/m 150 C. FL.
t/m 2.2 γ & t/m 2.5 γ
γ* 1.0 x 1.0 x t
x γ V W
) F.C ( cover floor -2
(O.Wt) slab of Own wei
g
ht -1
s
2.Live Load ( L .L )
)
S
u
Total Load (W .3
Load Values
1.00 m
s
t
1.00 m
. + FL.C. O.Wt D.L =
According to the CODE for loads
W
u
S
(t/m
’)
= 1.4 D.L
(for slab)
+ 1.6 L.L.
or
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
Live Load Values
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
Different Cases for One-way Slab
Cantilever one-way slab
2.0
L
L
S
S
L
L
S
L
C
L
Load Distribution
One-way slab
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
One direction
2-sides
One direction
2-sides
One direction
1-side
S
L
\
t/m
u
W
T h is imag e c an n o t c u r r en tly b e d isp lay ed .
/24 WL
2
/24 WL
2
/24 WL
2
/24 WL
2
/24 WL
2
/8 WL
2
/8 WL
2
/10 WL
2
/10 WL
2
/10 WL
2
/10 WL
2
/12 WL
2
/12 WL
2
=
ve+
M
min
8
L x
u
W
2
Moment Values
Simply supportedcontinuous two spans
continuous more than two spans
Empirical values for B.M
(Max difference in load& span≤20% and D.L >L.L )
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
Moment Values
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
1
L
2
L
1
L
2
L
1
M
2
M
1
M
2
M
1
M
2
M
In case of heavy L.L.
D.L → g
L.L → P
in Egyptian Code of practice,
IF P > 2 g → (M
min- ve
) in the middle of the span must be taken in
to consideration as;
24
L
2
p
- g
M
2
min
ve-
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
y
, F
cu
cm , F 100 , b =
s
, t
u
M Given :
s
A Req. :
d = t
s
- c
(cover) c = 15 - 25 mm
A
S
min = 0.15 % A
c
H.T.S
for Mild steel
c
% A 0.25 =
1.0m
d
s
t
..... J ..... C
b . F
Mu
C d
1
cu
1
m / cm ........
f . d . J
Mu
As
2
y
H.T.S for A % 0.15 but Ac
Φ f
φ f
0.25%
c
y
y
* d 100 =
c
A
Design of Section
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
& J
1
C
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
s
max (in the design) comparing to t Ф
8 mm →8 cm
10 mm →10 cm 14 mm →12 cm 16 mm →14 cm
Max. spacing between bars = 20 cm
Min. spacing between bars = 10 cm
10 =
\
Max .number of bars / m
5 =
\
Min .number of bars / m
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
A)-(A SEC.
B)-(B SEC.
B
L
S
L
B
A A
Details of Reinforcement R.F.T
When we use straight bars,
In case of simply supported span,
حيلستلا ليصافت ............................. Reinforcing Details
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
sec.
As
sec.
As
m / 0.5A
S
m / 0.5A
S
m / 0.5A
S
m / 0.5A
S
-Ve
Rfmt
is extended to
0.25 L
larger
each side
Note,
for slabs of t
s
≥ 16 cm,
upper steel mesh must be
added with
A
s
≥ 20 % of main steel
min 5Ø8/m’
Using straight bars
In case of two or more spans,
حيلستلا ليصافت ............................. Reinforcing Details
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
m /8 5
As 0.25 As
main sec.
m / 0.5A
S
m / 0.5A
S
sec.
As
clear
L 0.1
L
S
L
When we use bent bars,
In case of simply supported span,
حيلستلا ليصافت ............................. Reinforcing Details
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
1
L
2
L
m / 0.5A
S
m / 0.5A
S
m / 0.5A
S
m / 0.5A
S
sec.
As
sec.
As
Using bent bars
In case of two or more spans,
حيلستلا ليصافت ............................. Reinforcing Details
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
=
s
t
8 cm 300/35 = 8.57 cm
)1 EXAMPLE (
F
cu
= 25 N/mm
2
Steel 240/350 and360/520
2
kg/m 300 =
2
N/mm 30 L.L =
F.C = 15 N/mm
2
= 150 kg/m
2
cm 10 =
s
t
deflection must be checked
2
s
t/m 04.1 0.30 * 1.6 0.15) 2.50 * 0.1 ( 1.4 Wu
m 1.0
m 6.0
m 2.5 m 3.0
t/m' 1.04
m 3.0 m 2.5
1
2
3
KN.m 2.7
t.m 27.0
KN.m 3.9
t.m 39.0
KN.m 6.5
t.m 65.0
KN.m 9.36
t.m 936.0
KN.m 10.1
t.m .01 1
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
01.1
3 5.2
3 x 1.17 m 2.5 x 0.813
L L
Lx M Lx M
M
2 1
2 2 1 1
support
100 x 250
10x01.1
C1 5.8
5
C1 = 4.22 & J= 0.81
/m 10 Ф6=
2
cm 4.44 =
4.449 x 0.25 =
s
% A 25=
\
s
A
= 0.96 cm
2
= 5Ф8 /m .. Secondary Dir.
5.8 3600 81.0
10 01.1
A
5
S
As = 3.133 cm
2
= 5Ф10/m
A
s
\
= 25% A
s
= 0.25x3.133
= 0.96 cm 2
= 5Ф8 /m .. Secondary Dir.
cm 100 b
cm 8.5 1.5 – t d
:(1) SEC
s
Rfmt.
Detailin
g
m 6.0
m 3.0
m 3.0
m/10 5
m/10 5
m/10 5
m/85
m/85
m/85 m/85
10
10
cm 100 b
cm 8.5 1.5 – t d
:(2) SEC
s
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. En
g
. ALaa Ali Bashand
y
KN.m 2.7
t.m 27.0
KN.m 3.9
t.m 39.0
KN.m 6.5
t.m 65.0
KN.m 9.36
t.m 936.0
KN.m 10.1
t.m .01 1
cm 100 b
cm 8.5 1.5 – t d
:(2) SEC
s
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
100 x 250
10 .936x 0
C1 5.8
5
C1 = 4.39 & J= 0.815
\
/m 10 Ф5=
2
cm 3.753 =
3.753 x 0.25 =
s
% A 25=
\
s
A
= 5Ф8 /m .. Secondary Dir.
5.8 x 3600 x 815.0
10 x 936.0
A
5
S
cm 100 b
cm 8.5 1.5 – t d
m.t 0.65 M
: span mid left At
s
u
100 x 250
10 x .650
C1 5.8
5
C1 = 5.27 & J= 0.826
\
/m8 Ф8=
2
cm 3.86 =
Not recommended
5.8 x 0042 x 826.0
10 x 936.0
A mm 8 φ use
5
S
\
/m 10 Ф5→
\
/m 10 Ф4=
2
cm 2.57 =
s
% A 25=
\
s
A
= 5Ф8 /m .. Secondary Dir.
5.8 x 0063 x 826.0
10 x 936.0
A mm 10 φ use
5
S
ALB
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
4
S
1
S
5
S
6
S
9
S
8
S
7
S
2
S
3
S
ةتمصملا تاطلابلا لامحا عيزوت
ALB
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
Slab thickness t
s
for two-way solid slabs
t
smin
= L
s
/ 35 L
s
/ 40 L
s
/ 45
it is required to check deflection if the span > 10 m
Simple Slab
Continuous Slab
From tow side
Continuous Slab
From one side
Static load
→
cm 8 =
min s
t
= 12 cm
→
Dynamic load
but,
not less than
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. En
g
. ALaa Ali Bashand
y
Effective Span
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
The load is distributed in two
direction by the values (α,β)
α→short direction
→W
α
=αxW
u
s
β→long direct
→W
β
=βxW
u
s
Two Way Solid Slab
2<
s
r = L / L
The values of (α) and (β) are Calculated by
3 methods
βα
direction long in w
direction short in w
β
α
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
1- Grashoff Method:
0.1
2 1
Grashoff
1
2
1
1
1
&
1
4 4
4
r r
r
17 -6 See code
Assumption of Grashoff Method :
1. Neglect effect of plate action of slab.
2. Neglect corner effect.
3. Neglect torsion rigidity.
(2) STRIP
(1) STRIP
1.00m
1.00m
1
L
Ls
Wα
Wβ
•
2 way S.S with L.L > 5 KN/m
2
•
2 way H.B with L.L > 5 KN/m
2
•
Paneled beam slab & Ribbed Slab
Calculation of α& β
ة
حلسملا
ة
يناسرخلا
ة
تمصملا تاطلابلا ميمص
ت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
2- Marcus Method:
10–6 see code
8.0
•
2 way S.S. resting on masonry walls
•
2 way H.B. with L.L. ≤ 5 KN/m
2
3- Code of Practice:
•
Solid slab with L.L ≤ 5 KN/m
2
2
r
0.35
β
0.15 0.5r α
In design of solid slab we use the distribution of code of practice
Assumption of marcus Method :
1. Neglect effect of plate action of slab.
2. Neglect corner effect.
1.0
L m
Lm
r
s
= 0.87
= 0.76
Calculation of r
1.0 =
\
Where m & m
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
Reinforcement Details for TWO-WAY Solid Slab
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
حيلستلا خايسا صر ةيفيك
Design of R.C. Beams د. ىدنشب ءلاع
ةتمصملا تاطلابلا ناكرا حيلست ليصافت
For spans ≥ 5m
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
ALB
د. ىدنشب ءلاع
s
A Rfmt Reinforcement
حيلستلل ةبسنلاب ىتلاا ىعاري :
.1 نع لقي لا 0.25 % نم
concrete
A
S4
r
0.47 53.0 03.1
0.5 76.0
5.4 87.0
r
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
By Grashoff Method:
using Grashoff Method is more more safe
Example:
For the given plan it is required to:
Calculate loads for slabs & Beams
Data:
2
kg/m 150 FL.C =
2
kg/m 300 L.L =
Steel Grade 240/350 or360/520
Solution:
Slabs
2
t/m 0.45 =
2
t/m 0.15 )+
3
t/m 2.5 m * 0.12 D.L = (
2
t/m 0.3 L.L =
ةحلسملا ةيناسرخلا تارمكلا ميمصت
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
2
t/m 1.11 =
2
t/m 0.3 x 1.6 +
2
t/m 0.45 x 1.4 =
s
u
W
s
To have slab thickness t
cm 10 = 40 / 400 =
s
t
→
1
S
cm 6.67 = 45 / 300 =
s
t
→
2
S
cm 11.1 = 45 / 500 =
s
t
→
3
S
cm 12 =
s
take t
0.156 844.0 526.1
0.3x 76.0
0.4x 87.0
r
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
m)4 x 3 (
1
Slab S
t/m’
0.173 =
β
W t/m’ 0.937 =
α
W
0.165 835.0.0 5.1
0.4x 87.0
0.6x 87.0
r
m)6 x 4 (
2
Slab S
0.219 781.0 374.1
0.5x 76.0
0.6x 87.0
r
m)6 x 5 (
3
Slab S
0.114 886.0 67.1
0.3x 76.0
0.5x 76.0
r
m)5 x 3 (
4
Slab S
m)9 x 1 (
5
Slab S
t/m’
0.183 =
β
W t/m’ 0.927 =
α
W
t/m’
0.243 =
β
W t/m’ 0.867 =
α
W
t/m’
0.127 =
β
W t/m’ 0.983 =
α
W
t/m’
1.11 =
S
Wu =
5 S
W
m)6 x 1.5 (
5
Slab S
t/m’
1.11 =
S
Wu =
6 S
W
way slab - One
way slab - One
Loads:
D.L -1
Own weight ( O.W ) -
- Estimation of thickness:
mm static load 80 min =
s
t
= 120 mm dynamic load
min =
s
T
35
Ls
min =
s
t
min =
s
T
40
Ls
45
Ls
Slab simply supported
Continuous from one end Continuous from two end
Deflection must be checked
deflection check t don' we if
9B 36
))
1500
Fy
( (0.8 Ln
t
= clear span
n
L
s
B = L / L
2
in N/mm
y
F
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
3
R.C.
R.C.
KN/m 25 when
1.0 1.0 t o.w./m
γ
γ
2
KN/m 1.5 F.C. assumed
10
L Wβ
M
12
L Wα
M
end one from continous is slab If
-: follows as taken be may moment bending of values the simplicity For -
slab way one as values emperical
same with the method strip using calculated are forces Internal
-: forces Internal
L.L. 1.6 D.L. 1.4 W
type building to according assumed
L.L. -2
2
L
2
S
L
U
S
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
8
L W
8
W
supported simply is slab If
12
L W
12
W
ends two from continous is slab If
2
L
2
LS
2
L
2
LS
M M
M M
S
S
L
L
-: sections of Design
1.00m
Wα
Wβ
1.00m
L
Ls
Detail(A)
(A) Detail
(long) As
(short) As
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
As m/ cm
F . d . J
Mu
As
.... J .... C1
b F
Mu
C1 d
1.5 - t d
8
) (L W
M
min
2
y
short
cu
s
Short
short
2
y
long
cu
s
2
long β
As 0.25 m/ cm
F . d . J
Mu
As
.... J .... C1
b F
Mu
C1 d
2.5 - t d
8
) (L * W
M
-: direction Short
-: direction Long
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
2
2
2 2
m t / 0.30 L.L
m t / 0.15 F.C.
520 / 360 - 240/350 steel
kg/cm 300 N/mm 30 Fcu
-: ) 3 ( Example
cm 8 25 / 200
) deflection check (then cm 12 cm 11.25 40 / 450 t
cm 12 2 /15 150
t
s s
0.20
(1.33)
0.35
β
0.52 0.15 - 0.50 * 1.33
1.33
4.5 * 0.87
6.0 * 0.87
r
t/m 1.11 0.3 x 1.6 0.15 ) t/m 2.5 x (0.12 x .41 Wu
2
2 3
S
III
II
I
50.1
50.4
00.4
2.00 6.00
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
According to code
m / 10 5 use
m / 8 8 cm 4.02
24600 x 10.5 x 826.0
10 x 0.836
A mm 8 M.S.
rec. not m / 10 4 cm 2.678
3600 x 10.5 x 826.0
10 x 0.836
A mm 10 H.T.S.
826.0J 74.5 C1
100 x 250
10 x 0.836
C1 10.5
-: ) 2 ( SEC.
m /10 6
cm 4.2
3600 x 10.5 x 821.0
10 x 1.25
As
821.0J 69.4 C1
100 x 250
10 x 1.25
C1 10.5
cm 10.5 2.5 - d
-: ) 1 ( SEC.
-:
) I ( STRIP
2
5
s
2
5
s
5
2
5
5
s
t
1
2
KN.m 8.36 0.836
KN.m 5.21 25.1
50.1
50.4
m t/ 1.11
m t/ 577.0 11.1 x 52.0
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
safe ok cm 2.04 100 x 12 x
100
0.17
As
m / 8 6 cm 2.67
2400 x 10.5 x 826.0
10 * 0.58
A
M.S. 240/350 mm 8 use
cm 1.77
3600 x 10.5 x 826.0
10 * 0.58
A
H.T.S. 360/520 mm 10 use
826.0J
047.7 C1
x100 250
10 * 0.58
C1 10.5
cm 10.5 2.5 - d
-: ) II ( STRIP
2
min
2
5
s
2
5
s
5
s
t
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
m t/ 11.1
00.2
KN.m 5.55 m.t 0.555
t . m 0.888 M
) 0.37 1.998 ( 6 - 0 ) 2 6 ( M 2 0
Equ. M-3 :1 Method
M support at moment have To
-: ) III ( STRIP
supp.
m t/ 13.1
m t/ 22.0
00.2 00.6
m t/ 11.1
m t/ 22.0 11.1 x 20.0
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
W
2
L
2
2
/8
W
1
L
1
2
/8
or
W
1
L
1
2
/10
W
2
L
2
2
/10
M
supp.
= 0.888 m.t
0.444 m.t
0.799 m.t
B. M. D.
= 0.999 m.t
= 0.555 m.t
m.t 888.0
2 6
2 0.555 6 x 0.999
L L
L M L M
M
:2 Method
2 1
2 2 1 1
supp.
m.t 0.999 m.t 0.555 or m.t 99.0
Mor M of larger the e tak
:3 Method
right left
m / 10 5 use
much so m / 8 9 cm 2.67
2400 x 10.5 x 826.0
10 * 0.888
A
M.S. 240/350 mm 8 use
m /10 4 cm 2.91
3600 x 10.5 x 826.0
10 * 0.888
A
H.T.S. 360/520 mm 10 use
826.0J 57.5 C1
250x100
10 * 0.888
C1 10.5
cm 10.5 2.5 - t d
1 SEC.
2
5
s
2
5
s
5
s
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
m / 8 2.5 10 2.5
mm 90.5 362 x 25%
4
As
As
much so m / 8 9 cm 4.24
2400 x 9.5 x 826.0
10 * 0.799
A
M.S. 240/350 mm 8 use
m /10 4 cm 2.0
3600 x 9.5 x
826.0
10 * 0.799
A
H.T.S. 360/520 mm 10 use
826.0J 57.5 C1
250x100
10 * 0.799
C1 9.5
cm 9.5 cm 1.0 - 2.5 - 12 - c- t d
S slab of direction Long 2 SEC.
2 short
min
2
5
s
2
5
s
5
s
3
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
m / 10 5 use
much so m / 8 9 cm 2.67
2400 x 10.5 x 826.0
10 * 0.888
A
M.S. 240/350 mm 8 use
m /10 4 cm 2.91
3600 x 10.5 x 826.0
10 * 0.888
A
H.T.S. 360/520 mm 10 use
826.0J 57.5 C1
250x100
10 * 0.888
C1 10.5
cm 10.5 2.5 - t d
1 SEC.
2
5
s
2
5
s
5
s
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
m / 8 5 cm 2.133
2400 x 10.5 x 826.0
10 * 0.444
A
M.S. 240/350 mm 8 use
826.0J 88.7 C1
250x100
10 * 0.444
C1 10.5
cm 10.5 2.5 - t d
3 SEC.
2
5
s
5
s
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
6.00 m 2.00 m
12 cm
/
/ m 8 Ф2.5
/
/ m 8 Ф5
/
/ m 8 Ф5
4.50 m 4.50 m 1.50 m
/
/ m 8 Ф5
/
/ m 10 Ф3
/
/ m 10 Ф3
/
/ m 8 Ф5
/
/ m 10 Ф2.5
/
/ m 10 Ф3
/
/ m 8 Ф3
/
/ m 8 Ф5
/
/ m 10 Ф2.5
/
/ m 8 Ф5
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
12
12
1-one way
1
t
2
t
1
s
1
s
tc
α
(Be) width Effective
t C 2 t S
1 1
t C 2 t S
2 1
m 2.0 S1 B
(2/3) As / As of ratio max
L
As
As
S1 B
e
(main) (sec.)
main
sec.
e
Concentrated line load on solid slab (wall)
2
or S
1
Loads is taken as distributed on a length S
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
L
L
- 2 L 0.4 S Be
L 0.4 S Be
L L
L
P P
L L
L
P P
way one 1.5
L
L
way two 1.5
L
L
if
S
S 1 (L)
S 2 (L)
S
L
S S
LS
S
S
only loads ed concentrat for
L
s
L
2
S
1
S
)(L B
s e
(L)
eB
2- Two way
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
..... .....
) length inclined the is L : (where
* m
L* m
L
S
r
f
w
y
s
s
J.d.
M
As
J & C1 get
2.5 t d
8
L. L . β.
B.M.
) 1 ( strip
I
II L
LS
f
A
c
f
c
t
L w
y
S
1
cu
1
s
2
S s
J.d.
Mcosθ
J & get
b.
Mcosθ
d
2.5 d
design in Mcos Take
8
. β.
B.M.(M)
) II ( strip
100
ts
L
S
L
θ
M
cosθ M
sinθ M
S
W*α
S
W*α
Inclined Slabs
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
2 2
2
2
2
)2(* (5) L
projection horizontal on
t/m 0.30 L.L.
t/m 0.15 F.C.
520 / 360 STELL
/mm N 25 Fcu
: (6) EXAMPLE
50.1 50.100.5
00.5
00.2
WαWβ
II
I
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
s =
t
150 / 15 + 2 = 12 cm 500 / 35 = 14.3 cm
cm 14 t
s
0.24
1.22
0.35
β
0.46 0.15 - 0.50 * 1.22 α
1.22
r
1
1.0 0.82
5.00 * 1.00
5.39 * 0.76
r
m t/ 1.17 ) 0.93 * 0.3 0.15 2.50 * 0.14 ( 1.5 u )(w
m t/ 1.2 ) 0.3 0.15 2.50 * 0.14 (
1.5 u )(w
0.93 θ cos
21.8 ) 2/5 ( tan θ
2
2
(inclined) s
2
slab) (cont. s
-1
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
m / 8 5 mm 233.8 A take
mm 233.8 1000 * 140 *
100
0.167
As
cm 1.26 mm 126 As
-: ) 2 ( SEC.
m / 10 5
cm 3.63
mm 363.2
3600 . 125 . 0.826
10 * 13.5
As
0.826 J 5.38
25 1000
10 * 13.5
105
mm 125 25 - d
-: ) 1 ( SEC.
-: ) I ( STRIP
2
S
2
min
2 2
2
2
6
1
6
1
s
c
c
t
3
2
1
B.M.D
KN.m 13.5
KN.m 13.5
t/m` 1.2
t/m` 1.2
00.550.1 50.1
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
m /8 φ 5
2.38cm
mm 238
3600 . 115 . 0.826
10 * 8.14
As
0.826 J 6.37 c
25 1000
10 * 8.14
c 115
t . m 8.14 0.93 * 8.75 θ cos M
mm 115 25 - d
-: ) II
( STRIP
2
2
6
1
6
1
s
t
t/m` 28.0 17.1*24.0
00.5
B.M.D
KN.m 75.8 875.0
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
PLAN OF
RFT. DETAILING
12
5.00
5.00
1.50
1.50
58/m`
58/m`
58/m`
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
B.M.D
Typical Rft. Detailing for Some Slabs
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
B.M.D
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
B.M.D
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy
B.M.D
ةحلسملا ةيناسرخلا ةتمصملا تاطلابلا ميمصت
Design of Reinforced Concrete Solid Slabs
Dr. Eng. ALaa Ali Bashandy