258 Solutions Manual•Instructor’s Solution Manual to Accompany Mechanical Engineering Design
C Following calculations based on unit leg h = 1
AA=1.414*(b-b1+d-d1)
xI=0.707*xIu
tau2=F*a*d/2./xI
tau1=F/AA
taumax=sqrt(tau2**2+tau1**2)
h=taumax/tauall
C Adjust parameters for now-known h
AA=AA*h
xI=xI*h
tau2=tau2/h
tau1=tau1/h
taumax=taumax/h
fom=xIu/h/xl
print*,’F=’,F,’ a=’,a,’ bead length = ’,xl
print*,’b=’,b,’ b1=’,b1,’ d=’,d,’ d1=’,d1
print*,’xbar=’,xbar,’ ybar=’,ybar,’ Iu=’,xIu
print*,’I=’,xI,’ tau2=’,tau2,’ tau1=’,tau1
print*,’taumax=’,taumax,’ h=’,h,’ A=’,AA
print*,’fom=’,fom, ’I/(weld volume)=’,2.*xI/h**2/xl
print*,’ ’
print*,’To change b1,d1: 1; b,d: 2; New: 3; Quit: 4’
read*,index
go to (3,2,1,4), index
4 call exit
end
9-19τ all=12 800 psi.Use Fig. 9-17(a) for general geometry, but employ beads and then ττ
beads.
Horizontal parallel weld bead pattern
b=6in
d=8in
From Table 9-2, category 3
A=1.414hb=1.414(h)(6)=8.48hin
2
¯x=b/2=6/2=3in,¯y=d/2=8/2=4in
I
u=
bd
2
2
=
6(8)
2
2
=192 in
3
I=0.707hI u=0.707(h)(192)=135.7hin
4
τ
π
=
10 000
8.48h
=
1179
h
psi
6"
8"
shi20396_ch09.qxd 8/19/03 9:30 AM Page 258