BUREAU OF INDIAN STANDARDS
\HADUR SHAH ZAFAR MARG, NEW DLE 110002
SP 16 : 1980
BURFAU OF INDIAN STANDARDS
UDC 624.012.45.04 (026)
PRICE Rs. $00.00
FOREWORD
‘Users of various civil eninerag codes have been fing the need for explanatory hand.
book and other comptons Dass on nio Standards The need ps ben further emphaized
{few ofthe publi ofthe National Bung Code of Inda 1970 and implementation
In Yor the Department of Seen? and Techolgey st up an Expert Group on Housing and
Const Technology under the Chainmansip el Men Harklrt Sigh. This Group
cd out Indepih ei vaio arca of cll enges, and construcion practice,
‘Borg te preparation of the ith Fie Year Plan la 1973 the Group war signa the sk
prä à Scene and Technology pan for rasch, developmeat and extension work
in Be ser of boating and contruction technology. One ofthe hema of thie plan was the
Feet let dol alton hands a en ar ban a de Nara!
ling Code and various indian Standard and othe stiles ta the promotion of National
Belag Code. The Expert Group pie high pio lo this tem and on the recommendation
tthe Department of Sens and Tectnlogs the Banning Commision approved te flow
Ing tro re which mere amigned fo the Indian Standards Intention
2) Deiloment pro on Code inploestuio or bling and cil nica
1» Typifcaion for industrial bailings
A Special Commits for Implementation of Scene and Technology Preis (SCIP)
coming af experts connected with ferent supe seepage vil) wast pin 1974 Lo aie
‘holst Dictate General in entation snd forging toe deelopaeat of be work under
ihe Coatemanshp of May COn Martin Singh, Red Eesti Cll, Army Headquarters
and formerly Adviser (Consruston).Plnsing Commision, Goverment of Inda. The
scarico Ras so far ent subjects for several explaatoryhagbookacompaions
eras epproprate Ian SundadstCodeSpecteaton’ whic nude the folios
Functional Requirements of Biking
Functional Requirements of Indust Bing
Sammari of Idan Standards fr Building Mele
Balding Constution Pace
Foundation sf Bulnes
Elan Maik on Tante Rett Dele and Conan (8: 193
Desig Aid foe Reafoeed Corte to S 1 4861978
Explanatory Handbook on Masonry Code
{Commentary on Concrete Code (18 1486)
Gone Miser
Concrete Reinforcement
Form Work
Finder Engicerios
‘Stet Code (i * 800)
Loading Code
Bre sag,
Prefibication
‘asi of Ita Sc Str
Tospeton of Dire! lems of Ding Work
‘Bulk Storage Sewers fe Se
Balk Storage Structure in Corte
qua Rolling Structures
Construction Safty Practices
omnes on Pell Bung yes
‚One of the explanatory handbooks lente is on 15 : 456.1978 Code of practice for
lain and reinforced conce (rd revlon). This explanatory handbook VER dr under
reparation would cove the basource of exch cause! the Ilerpreation al the ease and.
See cs ne e az wf hein Haneef wu aan
bese of these design ad iso reduce desig time Inthe we of eran elses Im he Code
orth den of Seams nbs and column io oneal Balding race
rhe preparation ofthe devin ad deed camion fhe owing handbooks
2) CP; 110 Pat 2: 1972 Code of practice forthe structural ve of concrete: Part 2
Den chart rn ¡cafe am doubly red beams an tcp
1) ACI Publication SP-1703) Design Handbook in accordance withthe strength design
fRetods of ACI HA, Volume 1 (Scand Eaton). I. Amena. Con
€) Development Length and Anchorage Limit State Desig
D) Working Stress Methods
1) Deflection Caution; and
À Gener Tae.
“The format ofthese design ads as follows
3) Assumptions regarding material strength
1) Explaation ofthe bass of preparation of individual ets of design sis as rated
{othe appropriate causes ithe Codos and
9 Worked example ilustating the use of the design aids
Some impartant points to be noted in the use of the design als ar
+) Wherever the word “Code is uted inthis book, i sees to IS: 4561978 Cade of
raster Tr pla and roc concrete {Irv
+ Both chars and tables are given for exar! member. The charts can be ud cone
‘ele Tor preliminar) deiön and or Ana design whee greater accuray needed,
E may Be ied
1) Design of columas is based on uniform distribution of steel on two faces or on four
Rot
(Chats and tables for Bexar members de at ake ito consideration crack conto!
»
End se an or strength esis ony. Dealing als even In the Code should
fold for crack contol
1) fe sen being ud in the dein has a strength whic s sg deen fom the
‘ne ied In the Charts and Tabs, the Chart or Table forthe newest ale may be
‘Gland ara of ranfrecnat ths eMail mod in proportion to the to of
tbe seen of sees
D Im most ofthe charts and tables, colour iento is given onthe pe hand
eer along win other slat values to inate the (pe Of sees in her chart
fabs sl vale have been pen.
“These dein ads have beca prépare onthe ass of work done by Shri P. Padmanabhan,
‘cer on Speval Duty, 181 Sha ER, Narayanappa, Assia Decor, iS ms abo
Ste withthe work The dat Handbook war eu for review Lo Cent Pubic
Works Departmer Now Dui Cement Reach Instat of India, New Delis Mena!
and Engimering Consultant (lada) Lined, Rane, Cet Baling Resch Instat,
Roots Starr Engine Reseach Conte, Madras Ms CLR, Narayana Rao, Madras
And Shr KC anlar Maas and te vows rival have en taken into congestion
‘wil naling the Design Ais.
SPECIAL COMMITTEE FOR IMPLEMENTATION OF SCIENCE AND
‘TECHNOLOGY PROJECTS (SCIP)
CONTENTS
LIST OF TABLES IN THE EXPLANATORY EXT
LIST OF CHARTS
LIST OF TABLES
SYMBOLS
‘CONVERSION FACTORS
|, MATERIAL STRENGTH AND STRESS STRAIN RELATIONSHIPS
11 Grades of Concrete .
12 Types and Grades of Reinforcement
13 Strsrin Relationship or Concrete
14 Street Relationship for Sted
2 FLEXURAL MEMBERS
21 Assumptions
22. Masia Depth of Nesta Axis
23 Rectangular Sections
Under Reinforced Sections
Doubly Reinforced Sections
Teens
Control of Detetion
‘COMPRESSION MEMBERS
Asia Loaded Compresion Members
(Combined Axil Load and Uniaxial Bend
Assumptions
‘Sues Block Paranctee when the Neutral Axis Lies
‘uate the Seaton
Construction of Interaction Diagram
Compresion Members Subject o Basis Being
‘Slender Compression Members
SHEAR AND TORSION
Design Shear Strength of Concrete
Nominal Shea Stress
‘Shear Reoforcemeat
Torsion
DEVELOPMENT LENGTH AND ANCHORAGE
Development Length of Bars
‘Anchorage Value of Hooks nd Bends
WORKING STRESS DESIGN
Flexural Members
Balanced Section
Under Renfored Section
Doubly Reinforced Sesion
Compression Members
Shear and Torsion
Development Length and Anchorage
DEFLECTION CALCULATION
fective Moment of neta
Shrinkage aná Creep Defetons
LIST OF TABLES IN THE EXPLANATORY TEXT.
Table
A Salient Ponts onthe Design Stes Strain Curve for Cold Worked
ES
Vales of Zug or Difernt Grades o Stel
Limiting Moment of Resistance and Renforcement Inder for Sins
Rare Retangla Seton a
Limiting Moment of Resistance Factor Mana, Nimmt for Si
Reste Rectangular Sectors aad
Maximum Percentage of Tensile Reinforeement Pu for Sig
Reinforced Rectangular Sections
Sues in Compresion Reinforcement, fe Mmmt in Doubly
Tinned Beam with Cold Worked Bars a
Multiplying Factors for Use wit Chats 19 and 20
Stee Black Parameters When the Neural Axis Lies Outside the
‘ston E
‘Additonal Been for Sender Compresion Members
‘Maximum Shear Stes ra
Moment of Resistance Factor Mb, Nm for Balanced
Rectangular Sesion
Porentage of Tensile Relaforeement pura for Sing} Reafored
Tasted sesion
Values ofthe Ratio Au
LIST OF CHARTS
FLEXURE — Singly Reinoree Seton
JIS N/mm, f=250 Nimm d= St em
fa—15 Nimmt, 5-20 Nina? — d= 30 to 55 em
Ta=15 Nina", 5-20 Nim? dm 35 v9 em
am Is Naw’, fm 41S Nine! d= St 30 en
Ta=05 Nimmt, fm 415 Nimm die 30 0 55 em
am Is Nina’, fn 418 Nima d= 55 1 cm
Jam 15 Nimmt, = 500 Nimm de 5 9 30 em
Jam 15 Nam, f= 50 Nina? — d= 30 0 55 cm
Jan 15 Nimmt, f, = 50 Nimm d= $5 1 80 em
Ja 20 Nina, f= 250 Nimm de 5 to 30 em
Ja 20 Nimmt, f, 2290 Nimat d 30 0 $8 cm
Ja = 20 Nimm, 5-20 Nina? d=55 1 cm
Gas Nimmt 42 5 to 30 em
GS Naat d=30 58 em
GAS Nina? d=55 1 cn
Ta—20 Nina", Je = 50 Nimm de $19 30 cm
an 20 Nimmt, 5-0 Nm d=30 10 $5 em
fan 20 Nimmt, fm 50 Nm — d= 35 0 Wem
FLEXURE — Doubly Reinforced Section
f= 29 Nimmt, dd = 2 10 50 em
5-29 Nin’, dd = 50 10 40 em
CONTROL OF DEFLECTION
= 250 Nimmt
Spa dis Ninas
5-00 Nina
AXIAL COMPRESSION
f= 290 Nimmt
= 405 Ninas
5-0 Ninas
Page
‘COMPRESSION WITH BENDING — Rectangular Section —
Reinforcement Distributed Equal on Two Sides,
y= 250 Ninas 41D = 005
4-29 Nir? ap =010
429 Nimmt a mois
5-20 Nimm an=on
2435 Nino ap = 008
= Nine? a = vo
= Nimes ap = 01s
5-05 Nim ap = 00
= 80 Nimmt 210005
= 30 Nimmt a 010
= 50 Nimnt ap 205
= 500 Nim? 210-020 A
COMPRESSION WITH BENDING — Rectangular Sesion —
Reinforcement Distibued Equally on Four Sis
fy = 250 Nimm 410 ~ 00s ‘i
= 250 Nin ‘1 ~ 010
52 350 Nimmt 410 = 015
= 290 Nimmt “0-00
545 Nimmt 10.005
Ba AS Nimmt ap = ue
HAS Nam aa cis
5-5 Name «iD 020
5-0 Nimmt #10 2005
= 500 Nin tp 200
$= 90 Nine pren
5.200 Nini iD = 020
COMPRESSION WITH BENDING — Cirevtr Section
fy 250 Nimmt aD = 008
= 280 Nimmt tp = 010
2250 Nimmt am aos
5-29 Ninas ap = 020
SAIS Ninas ap = 008
25 Ninas pre
Lo 415 Nimmt pret
EZ Nina apo
5-50 Nimmt aD = 00s
$= 50 Nini ave
730 Nin
500 Nina
Values of Pu for Compresion Members
Biaxin! Bending in Compresion Members
Sender Compresion Members — Malin Factor £ for
Fiona Moment “ee
%
n
a
»
so
a
e
e
a
ss
sesesss
Page
‘TENSION WITH BENDING — Rectangular Section —
‘Relaforcement Distributed Equally on Two Sides
AD = 013 and 020
AID ~ 005 and 010
210005
ap = 010
ap mois
2100
ap 00
ap = 010
eos
ap=0®
‘TENSION WITH BENDING — Rectangular Secon — Reinforeement
Distributed qual où Four Sider
4-29 Nimmt
5-29 Ninas
Li — 45 Nom
LAS Ninas
fasts Nimes
mAs Nina
fm 50 Nimmt
= 30 Nimes
= 20 Nimmt
f= 30 Ninas
1D =005 and 010
AID =013 and 020
ap = 005
a =010
amis
41000
ap = 008
a =0
21001
eo
‘Axial Compresion (Working Ses Desig) on = 130 N/mm
Axial Compresion (Working tess Desig) om 190 Nat
Moment of Inertia of Tous
Effective Moment of Inertia for Calculating Detection
Perentage, Area and Spacing of Bars in Slabs a
five Lei of Columat— Frame Raid Agost Say
fective Length of Colunas — Frame Without Resrit to Sway
LIST OF TABLES
Table
Re Page
FLEXURE — Reinforcement Perentge,p fr Singly Reafortd Sections
Lan 15 Nimmt
fa = 20 Not
Ta—25.Nimas
La = 30 Nimmt
FLEXURE — Moment of Resistance of Sab, KN y Per Metre With
Jam 15 Nimmt fy= 250 Nina? Trives = 100 em
Ta—15 Nina" fy 250 Nimmt Thckoess = 110 em
La =15 Nimmt fm 250 Nimmt Thickness = 120 em
Ta = 15 Nimmt fy—20 Nina? Thikoess = 130 cm
a = 15 Nimmt. Jim 250 Nina? Thickoes = 149 em
amis Nat fy 250 Niumt Thickoess = 150 em
am 15 Nimmt fy 250 Nimmt Thickness 175 cm
fa = 15 Nimmt 55-29 Nimmt Thickness «200 cm
Ja = 15 Nam" fj = 260 Nimmt Thickaes = 225 em
Jai Nramt 5,29 Nimmt Thcknes = 250 cm
SaaS Nina? fe = 418 Nimmt Thchoes = 100 cm
Ta 15 Nimmt y= 413 Nam? Thickoess = 110 em
Lan 15 Nimmt = 415 Nimmt Thskness = 120 cm
fan 15 Nimmt 5-41 Nat Thickness — 130 cm
Ja 15 Nimm 5415 Nimmt Ticas = 160 cm
anis Nimmt 5415 Nimmt Thickness — 150 em
Lam 15 Nimmt 5,415 Nimmt Thickness = 175 cm
1a 15 Nimmt 55-415 Nimmt Thickness = 200 cm
Jam Nimmt fj 415 Nimmt Thickness = 225 cm
Jam 15 Nimmt 55-415 Nimmt Thickness = 250 cm
Za = 20 Nimm {y= 250 Nimmt Thickness = 100 em
Jan 20 Nimmt 55-250 Nimmt Thckoest = 110 cm
Ja = 20 Nimm fy— 250 Nimmt Thickness = 120 cm
Jam 2 Nimat 5,2% Nimmt Thickness = 130 cm
Ta =20 Nimmt = 250 Nim. Thcknest = 40 om
Ta=20 Nimmt y= 250 Nimmt Thickness = 150 em
fam 20 Nimmt f= 290 Nim Thickness = 175 om
La =20 Nimmt f= 20 Nimmt Thicknest = 20. cm
Ja =20 Nin? fj = 250 Nfamt Thickness = 225 cm
Jam 20 Nimm fm 250 Nimmt Thickness = 250 cm
Table
No
35 Jam 20 Nimmt $415 Nimm? Thickness = 109 em
% Jam 20 Nimm fy = 415 Nim? Thcknes = 110 em
7 Ja 20 Nimm: 5415 Nina? Thickness = 120 cm
Jam Nimm? fj-— 415 Nimm? Thickness = 130 em
Ta—20 Nina? 7,415 Ninn? Thickness = 140 em
Ta —20 Nimmt fj = 415 Niamt Thickness = 150 em
Ja = 20 Nimm f= 415 Nima? Thicknest = 175 em
Ja Njam? f= 415 Nim? Thickness = 100 em
Jam 20 Nimm! 5 = 415 Nimm? Thickoess = 225 em
fa = 20 Nimm? fy = 415 Nimmt Thickness = 250 em
FLEXURE — Reformen Pesetage for Doubly
4-25 Nimm
29 Nam 5-20 Nimmt
Ta=25Nima" 6-20 Nm
Am Nimm m 250 Nam
Janis Nima? Ads Nom
Jam 2 Nmmt pm 413 Nim?
Ami Nimmt AIS Nam
(am Nima? = 413 Nine
Ta—=15Nima? 5-50 Nimmt
la 20 Nimm 5-80 Nam:
fans Nim! 5-0 Nima?
I Dr Nim
FLEXURE — Lining Monet of Restan Facto, null fa fo
‘Sing Renfoced Teams Nant arf
5-20 Nimmt
AZ Nom
4250 Nam
Sender Compretion Members — Vales of Ps
Shea Design Stear tenga of Cont, ru Na
Shear Vera Sure
Sheet — Ben Bre
DEVELOPMENT LENGTH
Plain Bars
Deformed bar, fy = 415 Nim
Deformed bar, 500 Nimmt
‘Anchorage Value of Hooks end Bends wo m
WORKING STRESS, METHOD — FLEXURE— Moment of
Resistance Factor, M, N/mm for Sinpy Reinfored Sections
am 50 Nimmt
73 Nan
85 Nimmt
os = 100 Nimmt
Tae
No
3
WORKING STRESS DESION — FLEXURE — Renforcement
Perceotags for Doubly Reafoond Sons
cam SON ou 140 Nina
an 70 Namt sam 40 Nimmt
can $5 Nina? 00m 40 Nina
dae 100 Nam ou 140 Nimmt
amm SONME 60 280 Nina
dam 70 Nimo sum 290 Nina
dam #5 Nimmt 60-20 Nam!
om 100 Nina! aa 230 Nimmt
383
BEBER
WORKING STRESS METHOD — SHEAR
Permisdbl Shear Sres in Concrete ry N/mm!
Vertical Sup
Beatop Bart
sey
WORKING STRESS METHOD — DEVELOPMENT LENGTH
Plain Bare
Deformed Bars — 200 Nimmt, 0. = 190 Nm
Deformed Bars — eu = 275 Na, sa = 190 Nimmt
Moment of neta — Vales of 2412000
Byes
Mout OF INERTIA OF CRACKED SECTION Hae ti)
1= 008
ai 010
aa=015
408
gees
BEBE
DEPTH OF NEUTRAL AXIS — Vales of ld by Elie Theory
a=00s
per
aim 01s
aldo
‘Area of Given Numbere of Bar in cm
‘Ares of Banat
ess rose
ESSE PERE
SYMBOLS
Ae = Area of conerste
A Grote ares of sion
MT Ars of tet a column orina
Ay reten bear or Sab
Au Area of compesion sel
de = Arca of trope
dos = Are af addons tne
‘aq = Defletion duct ce
Detection due to shiakage
D Bread of beam or sorer
“dimensions 0? a fectanglar
cola
— give width of Mange in a
"Team
= Breath of wb ina Tbeam
= Centresto.cetre ditance between
corner are he dicción of
San
(= Oral depth of beam or sab or
"mee? of column or large
dimension in a relatar
colma or ‘dimension E a
fectangolee column inthe
Siren of Bending
De = Thickness of fang in T-beam
A2 Bécive depth ofa beam or dab
d'un — aisance of cane of com.
pen centre fam
sot tbe concrete secon
di Contre a centre distance beeen
‘omer brs in the diction of
dep
£ = Modula of esc of conerte
Es — Modelos of class of steel
en Eosentreiy with respect to major
Si) y
co = Fer with respect o
‘minor as (pat)
fa = Compressive ses in concrete at
e he level of cemeod of
fy = Chanetrie compressive
# Strength of concrete
Ju = Flexor tenwle strength,
(medal “Gt pure) ot
fe Susi steel
= Compresie sten in steal
fovresponding to à stain of
= Stes inthe reinforcement
Te othe eon eet
ed wed bonding
= Came yield seh of
= Design el reg of ace
7 Bitcive moment of neta
= Moment of inertia ofthe gros
Section about centroidal ac,
Reine reinforcement
= Moment of inertia of ercked
= Final tics of beam
22 Faut ties of column
= Constant or cofcint or ator
= Development length of bar
= Length of column or span of
ven =
=f gg te,
SEN
os
me cn
Me th me
en
se =n
capri
a
Me =D nee zi
SE ori
Si oad, “Seding about
Mu Maximum uniaxial moment
Capac of the section with
Sha osa, ending about
My = Equivalent ending moment
May = Additonal moment, Me — Mate
In doubly rire beams
Masa" Limiting moment of resistance
ore
m= Modular ato
PT Axial oad
Pi 2 Anal lad corresponding 1o the
ol maximum
ompresivesrin of 0005 Sn
Sete ad 0000 ete
‘lina compresion member
= Design asa oad for mi ate
"ote (ators load)
= Percentage ol enforcement
= percentage of, compresión
Teinforemen, 100 4
= Percentage of tension reinforce
ment 100 cb
= Additonal percentage of tensile
eat doubly
eisforeeeat
Fiore Seams 100 Au
= Spacing of etirupe
Moment od Torque
Newton metro Lilogram mete
Kilonewion metre Tonne mete
Strass
Neston pe mat gram pet mn
Neon per ma Kilogram per emt
“A,
1. MATERIAL STRENGTHS AND
STRESS-STRAIN RELATIONSHIPS
1. GRADES OF CONCRETE I ely re M Id M ae
or Perl members. Chars for fatal
“he following sx, des of conics, can members tad tal Yor tah tare
de wed for rénftd conecto ork as shen Jor these mo rede ony. Howe
elle in Table 2 07 the Code CS "456: hes lor dedon of Feten Member e
Bre hen for Grade 15, MOM MSS and MO.
M15, M20, M25, M30, M3Sand M40. 112 The chats fr compresión members
“Te number inthe grado designation sees Pl 10 af grades of conte
DÉS Re NE 12 Tues AND cranes or
man: e narco Gen log REINFORCEMENT BARS
Gained athe a low Wau nok
fore than 3 pel the et Yells We The ges of sel permite for se e e
Seca ot infront bars in ofthe Code tod thie
racial sents (pected sium
TERT ea ro conse YA Ar of 03 peat pro m)
eof See Indian Stndord Yield Sess 9 02 Percent
DES Prof Ses
Md te (lia bc) 432 (Pat 1966") 26 Kell forbes upto
: d IA
1
Mild steel (hotel deforms: 11919661 À 24 km for bars over
an) J ine a
Medium tensile see (hin 492 (Pat 17196636 Kpflmm for bars upto
‘an | „mm,
est or an one
Medium tensile see! (ho ao} ni up to 0 mm
rolled étermed bart) To
| Ann an ome
rm a
igh yt streng tt (te Er SK fr als
A deformed bn) “
Elias efomes
e
50 Ninn fol ar snes
High yield arco, sel E eran
J
Harden el wire frie 56619678 and Pasta!
aia
SE D ee ea: O; intend San nt bois
“Spread fa ml e 04 aio ne sc tre ad, Ban rn sc ie fr conc
en ae nd len ee Ki av
un SE at le il men ee a Bl age Somes
pican fr cote el Nb ih dared ban o coro nme (ond
(Sort fo Dre e if cnr none ro)
A A A e e se
Tabiog the above vale ito consideration,
iow li shat an bi have es
repared for chee gres of e hai
‘Encarta rng equal to 250 Nino,
AS Nit and 500 Nima,
121 the tec eg ed a a den has
eth wh ay ret rm te
‘hore alar, the chart tbe forthe nearest
Ses id he ale
he rte of ang
122 ine vales off (nsldingihe value
for bar ra see! ite Abri have Den
included ln the tbl for By reinforced
13 STRESSSTRAIN RELATIONSHIP
FOR CONCRETE
Tin ole re tw fs a:
insted iy acl
FRE abe, Wiad nao tat
a San
Ss Specie Meme BG
Serle D ten a0 of he
a AE ee ha Ur
rl eu ouh ce
Gece wel card kel
Fis ed Bee ed oy
Me usaf an CAS
Se ain la
tote free pa Cfa
ote
LA STRESSSTRAIN RELATIONSHIP
FOR STEEL
The modules of casi, of ste, E is
Fake a 200 000 Nims (60. of he Co,
he ie apela to al gps of
‘The design yet stes (02 percent proof
fire) of tl qual o re Wiha Val
SETAS for qa (0342, ot the Code) the
design vii sis fy becomes 087 fe Te
ieseatraim rlainlp fer steel in tension
‘nd comprenne 1 be the same
For mid, de set de porn
do sain up o yield point and ıerafier the
train incre Alcoba! rs Gee Fig. 2)
For coldworted ban, the Mere te
Remi gen in Fig. 22 ofthe Code wi
Fe. 1 Datos SmmeSmant Curva son
Conners
‘ra. 2 Sram Seman Cunt oR Mo Sen.
be adored. Acorn to thi, the. see
promotional to stain up to à sr ol
Oa" pr Thereafter, te seat cone de
ended as gen below:
elos sra
Ni
9000 1
Ho
0007
oo
Se
“The msi curve for design purpose i
bil by substoting Je Dr fein the
Shove, For two grades f Good ber
BER poate ie ot
‘Me values of fota in and den sess
‘orespondigg lo the pint defined above
fre gen in able Ale age 6), The nee
a came for these two erden of cold
trove bars have bea plotted a Fi. 3
o-oo 007 000 0-00 0005
Fie, 3 Srmes-Srran Cuaves FoR CoLo-Woaxeo Sres
Sr Ls At Newt nn
Ss il y
son ve HE
Linc notion ny def imei a,
y
dl
2. FLEXURAL MEMBERS
21. ASSUMPTIONS
‘Te baie sumptions in the desen of
‘exert meters forthe lint sate of ok
Japan ar piven below (ee D. ofthe Codo):
*) Plane seions normal to the ais of
{he member real plane fer bending
‘The menta thatthe esa at ny ona
nthe ren econ is directly propor
onal te the Stance from the ta
Tal ur de the” iaa
Felforement has 0 under cra
‘grr of lacio deformation fo
‘compresion
22 MAXIMUM DEPTH OF NEUTRAL
AS
Aasumpios () and ( one the maximum
SE Re a Fun maar
FE ars cos aer
tobe ia Fig. 4 Tin marie oth of
teil ee iy om
Da
See _ 0008s
EP - oia
‘Tee vales of Zp for thee gras of
reinforcing tee are Bien ia Table B.
Cr
SN 2 8
23 RECTANGULAR SECTIONS
Te ce mn Ya fr cones
pros Rate
Curves la ig. 1 soe Pot tha seat
ook e Fi 4) thatthe ciel of com
presse force in a rectangular tection es
œusts À
37%
STRAIN
DIAGRAM
EXT
2750002 ver,
stress
DIAGRAM
Fo. 4 Smoty Ringorcan Secnon
a à distance of 0416 xa (eich bas been
feuded off to O42 yi he code) rom the
‘creme compression He; and the total free
Sfeompresion 16036 fab. Te leve um.
BT e dace Src! hens
‘ot comprenive force nd ste of tense
one qu (2G 0G) fence te
Upper in or Le moment of setas ol
EBD enforced rectangular secon I gen
By ike Tolomas equatos:
Sein fo, gone em Te And
span Ja be et be alten ol
Seng foment es nr
spy senforcedreaangslar bears
SESE Thee leer are pen in Table O
The teme ceforcneat Tempe, Pte
Conesontig tte delay momen ot
fester 1 ebained by equting the forces
enden and compresion.
Pu bd OTS)
096 fi bas
Subetitig for Zur from Table B, we det
fhe valor St Pusu Alfa a Ben In Tab
Ce
pr wm
ie
Pasado
‘The values of he ling moment of es
cc factor Maid" or diferent grades of
‘once and sel are given fo Table D. The
‘orespording percentages of rinforcemens.
re pen m fable E, Tose are tbe mamans
permise perenages fr singly restored
CA
ey,
TARE, E MANN PERCENTAGE. OF
THEME MENTOR MERE pr FOR
SINGLY ENFORCED “RECTANGULAR
mue 29)
Ni
231. Under Reinforced Sections
Underreifored seston means a sigly
RAR reden wih renfe pee
stage not escena the appropaate vale
een lo Tale E. For sich sections, the
{tpt of neutral ans su wl be sone han
Sas. Tho ala Im latte eit Sate
ap wil, therefore, be more tan
BER ooo: and the dem en
sta wi 30076, The depth st
Au i obtained’ ty equating the forces of
fenton and compression.
Aiton) motas
(a) oth
La ) Be
he ore tn th io u
al tte prodect of the tease fürn
RES
Mam elo aos
ons (85) (ons an
Suba for 3 we ot
sos (f)
¿as £a)
bo £4)
221, Chr 11018 m ten pe
By tui cient mi to A ond
The bls ae a's f KN per ee
DAS Ghats ae en for tres pds ot
Afsana M mt ae most Common
tel fame ie id
ie a eg aa, a ot
EP a a 1
int ha be AS spe
eon DES
23.12 The moment of reitunce of slabs,
Wü Baro of diferent diameter and spacings
te gen ia Table 3 10 Tobin ae pen
{or Soneto grades M 15 208 M 20, ith
vo grades of gl, Ten deere
‘loge from [0 em 1029 em, are ous,
‘Thee aes ake’ lao, sosount 2552.3
Of the Code, tat i, We maria bar
‘lancer doesnt exer one sgh he ek
es of te sa Clear cover or rales
et is le une te
Fate poe iS so at
the tap pa hand commer indicate the eon
lee the reinforcement peresiage would
E pins and he eos at the Tower
{ef hacer Indias th reos here
{he ronforement ffs dan the mile
tecordiag to 25521 ofthe Codo.
Example Sing Reaforced Beam
Linie ti min tion nore
segui for mena team mtn
EEE lodos dt
She of bum 7 x 60m
EE 1:
CET
cio momen
sAsoning 25 mm dia ban with 25 mm
arco,
fective depth 60 235%
From Table D, for fy = 415 Nimmt and
“ja 13 Nina
Ma = 200 Nan
A « cow
2207 io
Ma Son
as
on x ox 3 x (SB)
= 1965 km
Actual moment of 179 KN les (han
D She seston a erelor tobe eignet
E sing reload (ender enone)
Festung seston.
Manioo or Remo 10 Puxuns CHANT
For fering to Chart, we ned the vale of
‘moment per mete width,
Neb = 1 567 Nam por vit
ag aur ely Gee
AAA
Referring to Chart 6, oresponding to
Melb = 567 Nm and dm 5625 em,
erent of tel p= MPA 06
ges
For refering o Tables, we need the value
Me
Nu
oxi
arcas
17 Nima
From Table
Percentage of ninforsemen, py = 0396
Example 2 Sad
Determine (be main eiforsement re
(tied fora sab with the following dat
Fectored moment 90 Nan
tre
an
Depth of lab ES
Covert mit Mis
Cierro are 29418 Nimmt
‘renfowemest 9250 Nimmt
Merson or REA 10 TASLS ron Stans
Referrin to Tale 15 (for fy = 415 Na),
Sealy we get the following relaorormect
dor onset of une of 96 in
‘Fram daa 3 cm spacing
or 10 mom dl a 20 6m pacing
Renforcement given ia the table it bad
08 à cover of 18mm or bar diameter wach“
et sete.
Merion oF Rormanıc To Flzxuns Chart
Assume 10 mm dia ars wi 15 mm cover,
d=n-15
Dh = Mir
FE Sa 207 Nam
Ma 2200 1 1B (A)
masia
ca ening sont 90 Lai ts
ON
Referiog to Chet 4, reinforcement pere
Goole nu
Referring 1 Chart 90, provide
‘mm da at 13 om spac
or 10mm din a 20 om pacing,
‘Aertel,
Ay = 0495 x 100 x = 38 em per
mer with,
From Tabl 9, we ge the same rear.
9) Fors = 250 Nia
From Table D, Manabi! = 224 Nom:
Moe ms)
Aca Seng amet of 261 ele
Sore ng oie monet
Mente Chart ala pe
‘centage, pa = 078 =
Heats Gr, pri 1 me da
ES
232. Daly Rolforced Sections — Do
cuales sont are general
‘then the diners fae am hae Ee
Predetermined trom oiler consdrationt
Eid ihe den moment cies te nom
Sl resiance of singly reinforced section
The ali mames of rane eed
PRE fol ps
ment The moment of tesstgee of doubly
‘eifored son thus the sum of tbe
Haas moment of penas Mai of 2
ae senora section andthe additonal
ista of sete Me Cen the als
of Me nbc pete ha May, oval
of Mean be Estes
Te ott for e sin! moet of
Siro of talon reinforcement und com
Session rider, tat i =) where
ite Gate fom te ex compre
renferment Theile, comte the
moment ef restos dus 19th addons!
alle réaforement and de compresión
reinforcement we get the flowing
Moy = An O81 f)(E= 2)
ao, May = Ah d= 2)
where
as e the ae of aoa! es rin
forcement
A ithe ar of compresion rinore
Jo 108 stes in compresion reinore-
CEN
sa ie Sempere in onset at
then Pie wt of compe
¡ios the additonal es force i balance
by the additions compressive fore
Ala fa) = Ann OST
Any two ofthe above thee equations may
‘het for dining du 208 due “The toa)
‘nae reinforcement I eben 8,
A Mia
um ran BA Au
11 wl be noticed tat we ned the ae of
cna Ya ae yee clea
A Topic gr Br Y mse fo gh
Eo pe re
teen Shear wan ee
Srna ket Stones itr
et wil te equal 000035 (1-
0.0035
s
a Koons (1- <2)
220.002
TRAIN DIAGRAM
Fo. 5. Davy Ramroxceo Secnon
Fay 08 jo, oneal Theo dp ost
RTE RS a es Bie pe
PA oe Silanes EE tet
Be meni ae Du ma SU eres
sl Gt iia opin
eee Eee
edi naa Example 3 Doubly Reinforced Beam
TABLE E GTRESS my comrerssion — Determine the main inforeements |e
as” Maa se
un Sa fem
er
n EEE not Mé ima
ra er
RER TEE mim
BE ag 25 nm dé ta wih 2 mm
d= @ 25-73 = 56250m
2227, deb eo eed ain’ (47)
D There chats have een prepared Tor From Table D, fr fy = 415 Nimmt and
Jom B05 Simm and sie deci ann Jem 15 Nii
Ei ie mil el focal wn El Mara 092207 Nm 20710" KNint
‘Seas of250 Niamh Vals cf ke Dr Stet Man 207 x IO A
(Ges of cel dd so the aoe of cea aes, Tass
Behind by malig the ult rd „ron x
ac by Delirio Ih in * 10
‘The multiplying factors for Au, given in = 1965 EN
Die Fee fera me (one Atul moment of DD KNm is rene
perdi lo ecc pode MÁ, Queen Nom
sel for al de coco HD Ere roa nto be desire sa doy
enor land son
TRE PETERS TAR OR Remo rm Tales
“Clause 2.32.1) A 337 Nim
fing Pc ACTOR rom dg om id AT
se esas
2 = (Eras) 00
me 100 1 10 Neat Higher value of 4/4 = 0 wi be used
us 0e 00 veu for ring to Tabs,
23:22 The expresion forthe moment of Mb = 337 and 0,
Fests of doubly seeforced section may
to be mein in he folowing mamer poto
Anm WAS cm, de = 705 em
Rein 1 Tat canon 0
Moo Mos + or) (da)
Me
sá
where
ey the additonal percentage of tens Chart is given only for fy = 250 Nam:
Rlafocement fort We chart 39 dsd” mochten
urna Bor according to Table À
087$ Referin 1 Chart 20,
Tee. Au or = 250 Nimm) = 107 emt
Ressonemane ma Cuan
om) DOES 379 = 25m
Moy = G20 = 1965) = 1235 Km
“Thee vales of An aná An av comparable
Vote ala be for the table
24 TSECTIONS
‘The moment of resistance of «T-beam can
te coanere ar the num of the monet of
‘sane ofthe concrete inthe we of wih
Fe onan due a ot
‘The maximum moment of resistance is ob-
{ated when the deh of outa an Pau
When “he thickness of Ange 6 sl
{hat le than about 0° there the
Menge wil de uform or ary anto
(Gee Fa. 6) an the ental of be compres.
five force im te ange can be take at Di
Fou the etree compos br, Ts
{he limiting momento reas olas
‘win smal valer of Dd
Mae = Mains + OMG fa
top me 4)
es Mesa
LOS a ic (6-06 sea
unn pia Eos Ces e
SEE nis
ES
En DEE BE o
A
Host Man + 046 fa
xte-bon(t~¥)
Dg ot fa A
Meran Mm
A He
Using the above expresion, the values
Of he moment of milano Factor
Ve ed fr det acy of Bb
“rl have baa worked out and given 18
$b 0er thee pds Of al
25 CONTROL OF DEFLECTION
254 Toe defection of beams and sabe
Road generally be wähle permissible kat
Ie aio of an Lo eve depth of te
[Bomber doc ant exe the value chaines
fn aserdanee wits 222, ofthe Code: The
folowing basis vals of spun 10 ete
depth a pen
Simply supported »
Serien Ed
Poor
STRAW DIAORAM STRESS DABRAM
Pa. 6 Temon
A gi a seas
Dobe, not te Pat LED me eda ss
Sener ceeded ines, eae care
FE lost E ne
De tera os co ae etme we
A E
RE
tn ee
Soa ieee tn Lu
Breer cra ECO Cru
WERDEN DE
key qui ‘Continuous sp 13
Te hee est dr mi Sao mer a
een Summe Be
Senet ar LEE: eon fan hun gr
ee rere Re do Sine in une deletions sbould be calculated in order to
PR ann for ener ey ee oot coed pr
e a ae
fe cdc cri, til 154 oc tuned ame th Coe moon
SNS ae hehe ans of pau ters
eme: pres od oo Tehran my We miler ea
Wie the ne renforement ex. fil ron, bj 10 the folowing mot
SE pw te ction wl fe dowdy eaten
io wil DT renforement percentage sould
IN LR
‘the additional tensile reinforcement theme.
er
: i sr a
Barth al alo and niece ad e
wal pales We pl SP tts Hate ee
Sheree de Hse arco Flame tn
e Enis as bas is
a SE,
ge or intermediate ale, ner interpol
Pre sat preter than, £06 eme ps
EPIA
DE pe) PET nm ae tos to
Sha Sane as ot
E
a Md sae ore
ork ecg eS uke PS PRE N Sees a a
Ps ter ssl à ER the case of abs supported
fdas be ta OPER 233 Ja te ceo to ay sb au
‘the chart, thus obtained can ‘a ah four sde, the Montez span should be
Ts bcd fora ar CIE fe, he te rn a Le
inthe moral rho sg Stn Set ob Rs ec Nae os
Ranieri dicas DNS
ed)
caf apa CE dpt 256, ne cu ofa lab be longe pan
minal ane soiled du LE ce oo te one an
Syne medio ac Tort, Wit don pn loas 3093 À
Heston Rama Ton FEA EC UR ont
RE CE ra tome
Tree sind ar I pote EL PR,
‘On the same Chart in which the bese Charo should oaks
Eure was dram ear. Hence Example 4 Control of Deflection
rate Seats poled, Check, wheter the depth of the member
eublyraaforced section poled ja Ge feoming ca Soca for cae
Berne pto pen Mag defection
Ie the value of A on tbe) Beam of Example 1 asa simply supor-
Goan ein 7
uur. ness 15
D) Beam of Example 3 as a canikserbeam
? ur stan of £m
0 SN SP Em 2 4 contin
Sp sponming in o direcion the
tl and ages spans being 23 m
and SE meet" The mane
hen insole 2 comaponte io
Asta to of
ET
Percentage of. tension einforement
cer o Char 22 yale of Max (99)
corresponding op = 06 15222.
‘Actua aio of span to efectivo depth les
‘han the alowabie vals Hence the pth
provided Is adequate for eontaing de
HR ET
(fs) =
Kenn
Ring to Cha 22,
8) Acta aio of
Max ve of (SER) = 210
Fo cantilevers values read fom the
{Chat ae foe mul by 035
Max value of Y
For coatiouous sibs the factor
lana from the Chart shou be
alpha by 19
Span
Max 5789 for continuous sab
= 286 x 13 = 3008
Actual ratio of span to elective depth ie
slp rete than the alza, Therefore
Yen may Des modi o stl
Sehen enelations may de made lo a
‘rin hehe is hin permisible hts
@ For fy 250 Nimm:
Aon
Referring to Chart 21
Max (8) -13
a DE 2313 x 13m 00
‘actual ratio af span 0 ete dep it
tit than the able ae Hen the
‘Scion provided adequate for soll,
ich 5
5
Y FLEXURE=
Che
Chart 3 FLEXURE — Singly Reinforced Section
MUT. 7
Chart 6 FLEXURE— Singly Reinforced Section
Chart 8 FLEXURE— Singly Reinforced Section
Moment of Resistance kNm per Metre Width
1,= 500 N/mm ta =15 N/mm
€
REINFORCEMENT PERCENTAGE, 100A,
Chart 11 FLEXURE — Singly Reinforeed Section
AN
Chart 13 FLEXURE — Singly Reinfore
Chart 21 CONTROL OF DEFLECTION
Chart 22 CONTROL OF DEFLECTION
415 N/mm!
RE
so Cd
o os ro 1 20 25 30
TENSION REINFORCEMENT PERCENTAGE, 100 Ast /bd
Vales of Spunjecive depth rato given i dis chart ae for simply supported spans
For ans over 10m, ply te vales by Opa la mets
For contiovou bats or lab, mpl the value for simply support
Om, multiply the vale from the chart by 035
Chart 23 CONTROL OF DEFLECTION
2
240
250
o 415
TABLE 1 FLEXURE — REINFORCEMENT PERCENTAGE, p FOR SINGLY 480
REINFORCED SECTIONS
500
de 77
uae, co se, cm 25
Nem" Go 250 as N “o El
3 ig Se de se as sa
E e Seer oat oes,
Bee sE Es
E M Oa 16 00 on oe ee
oe Gun Gan in 1 oxo LOT]
CRE {es om sm du se
De de Sa ie ie Se St
BE 2 Be na
Eee Bm E
aoe ERES”
BEE SE He 2
BREESE HO à
BHR ge
KERNE
Dar be ns aa
aa, ti a, orte
sn ne [Non Ge ne rue 0
ESE Ree
É DS Re ES mi
ori ers
8 Ru Big Rm mR Rw
BE À ea BES
mi à Bia eee
ioe oe la if ae De
E pase
Aisa a
oe à oat | pe 8
dE $ E a
8 RE li
ae EE)
Bi om mle
A sala
Bi me ig i
Fe oa oat m
eo lod
He See
nas
cif dan ll AA
eun eens °
y
240
250
415] -
480 TABLE 4 FLEXURE-— REINFORCEMENT PERCENTAGE, FOR SINGLY
500
tok
30
te aie,
we 20 ns ee
EEE &
m E
a = =
Sot ee 8
te sa B
a à 8
1B 8
E E BRB E
BE a m
Be i
® fm Re
Hy ES
LR
8 88888
5 33388
55888
ABLE 19 FLEXURE—MOMENT OF RESISTANCE
FLEXURE —MOMENT OF RESISTANC
ER METRE WIDTH
20
bul
il c=
E Le:
3. COMPRESSION MEMBERS
JM AXIALLY LOADED COMPRESSION
MEMBERS
A comprenin member 9b ested
blogg dese Cn 244 fhe Cde
the folowing minimum scan
AS cou forthe den of columns
1+ D subject to mininum o
enum gt By sub
26m.
1s the unsupported length of the column
{ace 23 BF the Code for dation of
supported length, and
Dig the neal dimension ofthe column
nthe direction under conseraton
[Altes determining the osent, the section
side dal Sat wal ot
Sou Bending Gee 32), Howener, sa simp
Moon when the vals of he minimum
‘Seema exclae as above rs than or
‘Squat to 000, 183 of the Code permis
{Se din o shot aly loaded compresion
memes by the folowing equation
PAJA ID te
tee
7. ste med (imal)
Sie
PATES
Ba) à 0575 2
Pos ja (A gh) + 0676 48
where
‘cis the gros ate of ros section, and
is he para of rearme
viding th ie by A
Fem 04 fa( t= fa) +066 fa
= Oba + By Ooh — 047)
lara 240 26 tas wa fo ding
Sion clas eran we de so
Seine de Tor seen ol tan
Shade tas en “pled aguas
ries of conte. It the fro soon of
ana ova, Pd an be asad
si he roses prea el ftom
ibe can he oper cion fe Cay
Peja ped to aos as
oi atthe comba us of the upper and
sp sna tn ewe
Pees Vars
Example § Axil Loaded Colum
Determine the Gros sion And the
coalorccment require Tor an aa loaded
sume wih the folowing dat
Factor load soin
Conan grade im
irse ang o¢ A Nm
vpn 30.
Te cost dmsaons ied il
Ami 0 arca! toalocemen! and
Reno Our.
Roque consent an of clama,
Provlte a section of 60 x 45 em.
ox
in
= en
Aes of esiforement, dy = OX
We have 10 dt wheter the micas
Sine ie bal dines of de Shen
ie Sten of ong nen
Se
es:
EL a6 20-2600
ci call = 2660 = 0083
Im the con of he sorte meson,
tone or
aren
cee ZA = 0007
The minimum essay ratio ss tha
bin bot deectons. Hease the Jpn of
he econ by th Ampli method of 8.3
ofthe Code la ala
32 COMBINED AXIAL LOAD AND
UNIAKIAL BENDING:
AAs atrady mentioned in 24, al come
preston memberr sould be designed for
»
inion cerco of fod. hold
‘aye be corre thet the section den
for moment which aso estan that oe
{ore presebed aoa each
32 Aeremptohe—Aunumptions (3), (9,
St de ne D monies iat
{conan ata load 2d Cond Te
‘Seumpion 0) Gat the maximus win
ira à tho oem compres
Sine’ 00035 bio apa mo de
Seel ac lo wit Ue conan a be
ag ete win ie nevi anes slong
fee edge ofthe econ; e to er cast
{Se seta Ya from DONS 3 2 the highly
CENTRODAL AXIS
queres a to yo a Le copa
TE
o ong at
Siar Seas a ETS Se
Saipan tela car
fe han ca a
Son te M compren wie. Tala
poll und a ru fo tn
ad ta en tar ea
Sib sudo cod fr e
fen te sas Use sa al
fe hy coupes ie 0893 as
Ost e a a a soap
O oe Gol
MIOHLY COMPRESSED
DOE
lth ROW OF REINFORCEMENT
STRAIN DIAGRAMS
00095
Neutral axle
within the section
Flo. 7 Cosanan AXIAL LOAD ANO Ua Baron
322 Sres Block Parameters When the
‘Netra Asis Les Ouse he Seen When
de postal, mis ls outide th ection,
{Be cape ofthe ses block wil bo a ad
Gti Fig 8 The sea it saformly
Ota tra dito tum nei
compressed edge because the strain is mote
{hae Gott aod rear the ses diagrams
Spuabote
Ar ose ik
—ou650-5(50)
own
= ot D [1- 4(75)]
‘Bind tl sects toe, te aly
EL
Moet tte Nui compo ie
= ous (2)- 4 00
E
FEO
SEE
a
ne
FH
7]
Ea
A
FL
Et
ie
i
f
| um
ir
+1]
ne
Es
i
+
E
i
|
a
\
4
|
a Gore nr Drm
a
Sense
Senna
eras eee
=o
3234, For the case of purely axial com.
presion the points plotted on the ans
BF the chart ae bald a flows
Pen jasa + BP je — 046 fa)
Po un
ou + of U
she
fa i the compresive rs in sel core
ponding 1 sein of 0002
“The second term within parenthesis pre
tent the deduction fr he cone replaced
by ie reinforeenent bare Thr tra à
Sa melted for comes, Howe,
A à beter approximaton à Constan! valve
responding Yo cont grade MÍO has
ren tod fn the present work co that the
co Des smal over the range of
fence tes normal sel. An acute
Seana of fr em wih eee
separation de Chart or eat
pad a conecte, whch isnot considered
ETES
2232 Wen bending more ce ao
{or Hot, the. Char are bo by
Ses lr pons of Sete an.
For each positon of neutral an the sain
cion aer the socios. and the
‘ret block parameter are determined. a
Sapin carr. Tus sesos nthe rio
forment ‘ae alo cassated ftom te
Kon sine: Therefor the tenant ata
ère and the moment about the coatrld
Of the section are cused an follows
2) When the neural ats les id the
ston
rem Gas + Vela
— rei, for te a of ras
RÉEL a SUR
time
— À vhs da te tf ie
Else ia the Ah mw;
= rs in e Ah row of eine
“et, omni en pose
ind lemon being oop,
= Hea Stee ae ot of
the An row of tinforsment: and
n= number of rows of reiaforeemest
m
The above expresion can be writtan as
Pe Se
A Ui fed
Taking moment of the forces about the
ira ol te sation,
= Gate (2 Go
AR Ua — fan
GD ls the distance of te conto ofthe
Sonetos block, measured from
‘the Mi compres igs, and
isthe dance rom th onto ofthe
sin the Hh on lor
ompresed edge and gave to
Sani o leat competed edge.
Dividing both sides of the ution by
Me
Hg" G.0S—c9
re]
D Men the moral are lez ihn de
Lo his cae, the stress block, parameters
Ar simple ad the can bo tet incorpore:
ted int the expresos which aro ant
‘Sime at fr Gear cu. Thus we get the
long. expresion:
noms Y m
1
hotes onen
+ 2 rs ml
En
see
= Depth of neutral axis
>
An approximation is made for the vale
ofa for MD, a a the ese of 3.2.81. Foe
Sir sections de procure e dame as
Shove except that the res lock, par
fer gen caer ae ot apple
toc te socio la eed nto lp and
Final it done for" determining the
Foreer and moments due to the sre fo
2222 ro cmpreto a bending —
ts, (Or metngulr sion have bien
Bren for resort où wo id (Char
Bo 29 for rnfocement on fost
(Ge 9 1e 5 Te Char Tor ie
ih 20 ars equally die où al is,
Bar they ean de ied wibout Sib
feo fo any ciber numberof bars (eater
ie 8) provided the tars aro dirt
gully ca the four sider The Chart for
‘eae meson (Charis $ to 6) have Den
prepared fort section mit bry Dt hey
Ens general ‘be used for scons with any
gba of toe St oo estan Cha,
Aa fo alu of D ot each cue men.
the nerd the bars pene to De fens
Re of the member The Une for Ja o
{adits tht the cial ar he ón be
fotemost row of gnfreement For pins
Sng above this tne onthe Char he
‘The lee Yor Jam totes hat he
Sesion se strength For pins below thie
ling” the’ outer tension Tenfreement
‘nderges inane deformation whe sue:
Se ie rows muy reach a stesso fr
Brad ei es val
{onthe lini sate of olga and nor a worke
ing ase
3234 Chants for tono wit bending —
These Chars ae exentos of the Chae
for Compresion ‘with bending Poi for
Ping these Chars are baise by sums
Eee low values of la he express pen
he, For the ease af pur sual teo
n= Boon
NS
joie = wee OH)
Charts 66 o 75 are given for rectangular
ins with eiforiment on Ino det
Sod: Char 76 to 88 are for renforcement
Sn four sides 1 should be noted that these
‘Share are meint for sng lot
aa hy do ot tae it sent cack
ao
Example 6 Square Colum with Uniaxial
Determine the reinforcement 0 be provided
jaa square column SES 6 nasal
Vending withthe Tolowag data
Shue of clam 45 x 45cm
Concrete mx Má
arce amet ot AN
acord fou 2500 kN
‘Cae
Factor mom IS
Argent of"
‘enforcement: ) On two sides
(8 On ores
(Assume moment du to minimum eset
El to fees than the acto moments
E
a
ae
EIA
EERE zio nom
Example 7 Circular Column with Until
poa
Determine the rioresment Lo be pro
sided à cor colma wih te ones
Diameter ofcolunn Sem
Grade eme MA
Cancer Seth 250 Nm? for
rennen avr up fo
Facored oad
Factred moment
{ater relforement:
(9) Hoop rinforement
(8) He ritorement
160
isin
TES iaa seal nomen
Assapiog 25 mm bars with 40 mm cover
Peery pce
ain = o = 0108
‘Charts for 7D = 0:10 wi o we
(6) Comm wit oop reinforcement
CATA
AA
Me US
TaD x
Refering 9 Chart 2, o
per
PO x 20 = 174
pepsin
LE ex so x
Acorn t 384 of he Cade, th eth
Ga comprestion member wilh hell 1e-
RENE
BE ne win al ds etre
Be un one DOS
SE Re ee Gan
exe
hon
a
RCA
Rn
Brom iar orf = 20 Na
MEZ x 20 = 16
BE anos
shoe
orf 2 Ne = 306 2000
Zi
92 ous
00%
According to 384.0 of the Code the ratio
Fine volume af ha rtoceent 1 the
lame of the core al not be los as
Sada Ta, where dy isthe
rows are of the sci and he as
the core measured tthe ote diameter
be bli Aoi me brs for te
104
nin
Gite
BR 1) lh
sta
Volume of Bla einforsement
Hacia
LED 00
oon
where, dani the ars of the bar forming
the tt and a 5 übe pich of the ol
I ower 13 sais) the Col reqiremet,
009 dain > 00091
For 8 mn dia bat, Au = 0503 em
33 COMPRESSION MEMBERS UP.
JECT TO BIAXIAL BENDING
Exact desen of members subject o axial
Jen and bist being cure
boss, Therefore, the Code permi the
delo of such member by the folowing
re
Mo Mey sete moments ao and y
Ts trat det desen loa
"ilomest capaci, with an anal load
Para oat andy e
«0 jon wove vate depends cu
Pi "Gre table below} br
eo don
Pita
<02
Sos
Ition may be done. Chart 6) can be ud
For dret valves of Pei the appıo-
peste of rashes ena oes
Ie the equation
a
1010 ten
Moments ue o minimum estoy are
des than the vals gen abre
Réafogenent in distibted equal on
CES e
Asa Gest til ame the riforement
Pepe, pat?
a= FAS = 008
nina moment capacity of the tion
about Soca d
as
app = 8B ons
van fr Dm 0% wilde we
Pala do pO moat
Rain Ce
Go
Max 098 x 15 x 40 x 6! 0910"
A
Une mora apy o te won
is
00 mous
an À
Chart for D = 0:15 wil be wed
Refring 1 Chart 45,
Mala 507 0083
0983 x 15 x 60 xx OO
Pi
Gaston o Pu
Referring to Cir 63 conesponding to
ee,
Ge 103 Nat
Fam 103 Ja = 103 x 40 x x
eN
EHEN
067
os
Le Boor
den
he sc vale of 017
niger tt ys fad on Le Cae
can te made up by sig ine is
12 bars of 1 am wll ive A303 cmt
Reiaforcemeat percentage provided,
pm re
‘With tie pecetag, the section may be
Muchos a olas in
Alla = 12715 = 00867
efe o Char 44,
Sab
Man, = 0095 % 15 x 40 60" 109108
22052 iin
Refein o Chart 45
Me 0085
00
Mon = 0986 156040 10
Reterting o Char 2,
pa A
Le 104 Nan
a = 104 x 60 40 x 107108
Trace
100
Palta IR non
May = 05
MalMa = Bey =
Moll iz = 078
Rao hare,
erg ote stow ab ot
de and Bete permiso valu of
He wos.
Hence the sion it OK.
24 SLENDER COMPRESSION
MEMBERS
Wet do ort
sage pene ete 1, de
er ere
ED TE,
ae u ots
Sie or, ae ch
BERN
PAT ans
aeg
Se Re de Se 77
“es
m= BBS)
‘ior aus an atonal moment Mo Mould
Re comer
Mo Foals)
‘The expresos fo he addition moments
fa de wet in De om ef cents
na, an follows!
Mam Po eu
where
wo nol)
5-5)
Table £ gives the values SE or - for
“fren vals of senderess ro
“10 AR
(Clases
vol
o
ih
In accordance with 387.14 of the Code,
{he adalvonal more may be reduced Sy
the making factor À given below
rire
she
Pa O45 fa de à O75 fy Ay which
maybe chi frat Char 3, nd ys te
Al load comsponding 10 the condition of
patimum compresive stan of 0.0035
In conce and incl asin of 0002 in
‘Sumas ayer of tension sel
“Though this, median is optional 2c
erde 10 the Code, I should always be
ken advantage of ae the value of À
‘ould de sebtataly hs than.
"The vale of Py ll depend on anangeinent
ge Sob ere rat 21
el The at he ccs sued
for evaluating A fr various cues re Be
ie Table 60. The values ven la Tobe 60
fre sed on the same assumptions fot
‘Denbers wih axila and nial bending
He expen fr an be ween 6
L= Pta
he lt ci
Chert 65 can be used for adios the ratio
SE ate calculos the alos PP and
Abe
Egg 9 Stoner Coton ith ió
Detemnive the reiforment required for
column which is resale Agost ay,
‘vith the Tollowing date
Si ofcolumn 4 x Dem
Concrete grade m
sra eng 415 Nimmt
rat d
60m
er dimensión la
Ese ng fon Som
Mon Uncen la
Unsupporidingh 70m
Factor Toad 1500
Factred moment inthe 40 Klan at top
“ren oflager and SAN
‘tienen bottom
Factors momentin be 304m at top
“ion ofsborer and 20 EN
icon te
‘The column is bet in double curators,
Refnforsenent wil be distributed equally
on four sides,
iu 60» 100
de O 150 > 2
BER >
A
‘Therefore the colmo is sender about
‘oth the men,
From Fa,
for do mao mois
por Y uen a vue
A mt
“
Maa Pete 15000113 (DET.
30
May Pay = 1500x014 30 = 650 KN
‘The above moments will have toe reduced
in accordance with 3870" of de Codes
‘ut mullet factor can be evaluated
‘aly ithe enforcement I knoe,
For fe tal, assume = 30 (with enforce:
ment equally on af the fur Sid),
Am x 30 = 200 cmt
From Chart 63, Pad m 225 Nimmt
Pau m DS x 1200x1010" 002700 KN,
Caution off:
Asa 25mm dia bars wih 40 mun cover
ID about sean) = 325 m 013
Chart or Table for dd = 015 willbe
E
aio oras = ¿mo
Chat or Table fo id = 020 wil be
Set
From Table o,
eat ea) (1 o
Bu = (0106 +000 x 3)
2 30 x 30 x 40 x Joe
Er
ta = (14 + pe
Loan
x
Deere
len mio
= SRS A
eas
AA
"FP ~ 210-6
ms
Te dition moves ts ae
‘el now be mule bythe above valet
oth: zu
Ma = 678% 005 = Nm
M52 G0 5092 = MN
The sédiional moments due to slenderaee
(Hace shouldbe added to the nal moments
Siler" modiyig the, Sltal "moments as
follows ve Note l'onde 871 ofthe Colo,
Mam(O6 x 40 - 04 x 229150 kN
Moya (06 x 00420) = DOKN
The above actual moments should be com
pared with tho culated from minimum
Einicio condeno (e304 of the
¿do ad greater valo 1 be taken as the
Jail moment Tor addiog Ge additions
1D mio
ane 2-0 + Damien
1, 6 m0, 0
er Bors
Both and , ar greater than 20 em.
Moments dus to minimum ecentrciy:
27
Ma = 1500 x ED m ALO RN
> 150 Kn
24
y= 1500 som
> wor
Total moments for wich the colume
À 10 edged a
Ma = A104 A = Nm
Mo m 3604373 = TORN
“The seston is to be checked for biaxial
Being
Pfad = ql
or
dí = mom
Referring to Char 45 (4/D = 015,
Pa
Many m= 108 X 30 30 % 40 x 40 %
oa?
1098 kN
Refeing to Char 46 (ED = 020),
Bee = 0086
Mon = 0086 x 30 x 40 x 30 X 30
1037 Nm
Mu 834
He = Bh nos
Me 33 on
Me 057 0
056
1500
PP,
Referring to Chart 64, tbc maximum llon-
AM Vale f Ma fe corresponding to the
above alos of Heyy and Pula 3058
SB eh higher ll be actual ala
WO HE Rte rarement of 90
Ay PHDIIO = 30 20 x 47100
3600
Chart 28 AXIAL COMPRESSION
Chart 25 AXIAL COMPRESSION
Chart 26 AXIAL COMPRESSION
7 COMPRESSION WITH BENDING —Rectangu
Reinforcement Distributed Equally on Two S
WITH BENDING
à Equal
0 COMPRESSION WITH BENDING.
R
Chart 31 COMPRESSION WITH BENDING — Rec
Secden — Ralalorcement Disibutad Equally on Two Sides
Chart 33 COMPRESSION WITH BENDING — Rectangular
Section — Reinforcement Distributed Equally on Two Sides
JON WITH BENDIN
Distributed Equally
SSION WITH BENDIN
Chart 44 COMPRESSION WITH BENDING—Rectangular
Section — Reinforcement Distributed Equally on Four Sides
Chart 45 COMPRESSION WITH BENDING — Rectangular
Section — Reinforcement Distributed Equally on Four Sides
Chart 45 COMPRESSION WITH BENDING ~ Rectangular
Section — Reinforcament Distributed Equly on Four Side
Chart 47 COMPRESSION WITH BENDING —Rectangular
Section — Reinforcement Distributed Equally on Four Sides
Chart 48 COMPRESSION WITH BENDING Ri
ection — Reinlorcement Distributed Equal e
Chart $1 COMPRESSION WITH BENDING — Circular Sect
Chart 52 COMPRESSION WITH BENDING — Cireuar
N
XK
N
Ñ
hart 53 COMPRESSION WITH BENDING — Circular
Chart 54 COMPRESSION WITH BENDING —Circul
Chart 56. COMPRESSION WITH BENDING— Circular Section
ett want [670200]
FH
PD!
Chart 59 COMPRESSION WITH BENDING Cir
Chart 60 COMPRESSION WITH BENDING — Circular Section
hart 61 COMPRESSION WITH BENDING — Circular Section
Chart 62 COMPRESSION WITH BENDING — Circular Section
Chart 63 VALUES OF P,, for COMPRESSION MEMBERS
sm
REINFORCEMENT PERCENTAGE, 100 A/A,
To
E E p 4H
= 6
> SEHR
es (= it al SICH
>
PR cS
RS
Ñ
BSH
1. Dion AD FOR RBNORCEO CONCRETE
Chart 64 BIAXIAL BENDING IN COMPRESSION MEMBERS
Chart 65 SLENDER COMPRESSION MEMBERS —
Mautiplying Factor k for Additional Moments
Chart 68 TENSION WITH BENDING — Rectangular
Section — Reinforcement Distributed Equally on Two Sides
Chart 69 TENSION WITH BENDING — Rectangular
Section — Reinforcement Distributed Equally on Two Sides
Chart 70 TENSION WITH BENDING — Rectangular
Section — Reinforcement Distributed Equally on Two Sides
Chart 71 TENSION WITH BENDING — Rectangular
Section — Reinforcement Distributed Equally on Two Sides
Chart 72 TENSION WITH BENDING — Rectangular
Section — Reinforcoment Distributed Equally on Two Sides
Chart 74 TENSION WITH BENDING — Rectangular
Section — Reinforcement Distributed Equally on Two Sides
Chart 75 TENSION WITH BENDING — Rectangular
Section — Reinforcement Distributed Equally on Two Sides