SlidePub
Home
Categories
Login
Register
Home
General
Special Right Triangles
Special Right Triangles
teacherfidel
13,587 views
54 slides
Jan 05, 2011
Slide
1
of 54
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
About This Presentation
No description available for this slideshow.
Size:
538.59 KB
Language:
en
Added:
Jan 05, 2011
Slides:
54 pages
Slide Content
Slide 1
Two Special Right Triangles
45°- 45°- 90°
30°- 60°- 90°
Slide 2
45°- 45°- 90°
The 45-45-90
triangle is
based on the
square with
sides of 1 unit.
1
1
1
1
Slide 3
45°- 45°- 90°
If we draw the
diagonals we
form two
45-45-90
triangles.
1
1
1
1
45°
45°
45°
45°
Slide 4
45°- 45°- 90°
Using the
Pythagorean
Theorem we can
find the length of
the diagonal.
1
1
1
1
45°
45°
45°
45°
Slide 5
45°- 45°- 90°
1
2
+ 1
2
= c
2
1 + 1 = c
2
2 = c
2
Ö2 = c
1
1
1
1
45°
45°
45°
45°
Ö2
Slide 6
45°- 45°- 90°
Conclusion:
the ratio of
the sides in a
45-45-90
triangle is
1-1-Ö2
1
1
Ö2
45°
45°
Slide 7
45°- 45°- 90° Practice
4
4 Ö2
SAME
leg*Ö2
4
45°
45°
Slide 8
45°- 45°- 90° Practice
9
9 Ö2
SAME
leg*Ö2
9
45°
45°
Slide 9
45°- 45°- 90° Practice
2
2 Ö2
SAME
leg*Ö2
2
45°
45°
Slide 10
45°- 45°- 90° Practice
Ö14
SAME
leg*Ö2
Ö7
Ö7
45°
45°
Slide 11
45°- 45°- 90° Practice
Slide 12
45°- 45°- 90° Practice
3 Ö2
hypotenuse
¸Ö2
45°
45°
Slide 13
45°- 45°- 90° Practice
3 Ö2
Ö2
= 3
Slide 14
45°- 45°- 90° Practice
3 Ö2
hypotenuse
¸Ö2
45°
45°
3SAME
3
Slide 15
45°- 45°- 90° Practice
6 Ö2
hypotenuse
¸Ö2
45°
45°
Slide 16
45°- 45°- 90° Practice
6 Ö2
Ö2
= 6
Slide 17
45°- 45°- 90° Practice
6 Ö2
hypotenuse
¸Ö2
45°
45°
6SAME
6
Slide 18
45°- 45°- 90° Practice
11 Ö2
hypotenuse
¸Ö2
45°
45°
Slide 19
45°- 45°- 90° Practice
11 Ö2
Ö2
= 11
Slide 20
45°- 45°- 90° Practice
11Ö2
hypotenuse
¸Ö2
45°
45°
11SAME
11
Slide 21
45°- 45°- 90° Practice
8
hypotenuse
¸Ö2
45°
45°
Slide 22
45°- 45°- 90° Practice
8
Ö2
Ö2
Ö2
* =
8Ö2
2
= 4Ö2
Slide 23
45°- 45°- 90° Practice
8
hypotenuse
¸Ö2
45°
45°
4Ö2 SAME
4Ö2
Slide 24
45°- 45°- 90° Practice
4
hypotenuse
¸Ö2
45°
45°
Slide 25
45°- 45°- 90° Practice
4
Ö2
Ö2
Ö2
* =
4Ö2
2
= 2Ö2
Slide 26
45°- 45°- 90° Practice
4
hypotenuse
¸Ö2
45°
45°
2Ö2 SAME
2Ö2
Slide 27
45°- 45°- 90° Practice
6
Hypotenuse
¸Ö2
45°
45°
Slide 28
45°- 45°- 90° Practice
6
Ö2
Ö2
Ö2
* =
6Ö2
2
= 3Ö2
Slide 29
45°- 45°- 90° Practice
6
hypotenuse
¸Ö2
45°
45°
3Ö2 SAME
3Ö2
Slide 30
30°- 60°- 90°
The 30-60-90
triangle is based
on an equilateral
triangle with
sides of 2 units.
2
2
2
60° 60°
Slide 31
2
2
2
60° 60°
30°- 60°- 90°
The altitude (also
the angle bisector
and median) cuts
the triangle into
two congruent
triangles.
11
30°30°
Slide 32
30°
60°
This creates
the 30-60-90
triangle with a
hypotenuse a
short leg and
a long leg.
30°- 60°- 90°
hypotenuse
Short Leg
Long Leg
Slide 33
60°
30°
30°- 60°- 90° Practice
1
2
We saw that the
hypotenuse is
twice the short
leg.
We can use the
Pythagorean
Theorem to find
the long leg.
Slide 34
60°
30°
30°- 60°- 90° Practice
1
2 Ö3
A
2
+ B
2
= C
2
A
2
+ 1
2
= 2
2
A
2
+ 1 = 4
A
2
= 3
A = Ö3
Slide 35
30°- 60°- 90°
Conclusion:
the ratio of
the sides in a
30-60-90
triangle is
1- 2 - Ö3
60°
30°
Ö3
1
2
Slide 36
60°
30°
30°- 60°- 90° Practice
4
8
Hypotenuse =
short leg * 2
4Ö3
The key is to find
the length of the
short side.
Long Leg =
short leg *Ö 3
Slide 37
60°
30°
30°- 60°- 90° Practice
5
10
Hypotenuse =
short leg * 2 5Ö3
Long Leg =
short leg *Ö 3
Slide 38
60°
30°
30°- 60°- 90° Practice
7
14
Hypotenuse =
short leg * 2 7Ö3
Long Leg =
short leg *Ö 3
Slide 39
60°
30°
30°- 60°- 90° Practice
Ö3
2Ö3
Hypotenuse =
short leg * 2 3
Long Leg =
short leg *Ö 3
Slide 40
60°
30°
30°- 60°- 90° Practice
Ö10
2Ö10
Hypotenuse =
short leg * 2
Ö30
Long Leg =
short leg *Ö 3
Slide 41
30°- 60°- 90° Practice
Slide 42
60°
30°
30°- 60°- 90° Practice
11
22
Short Leg =
Hypotenuse ¸ 2 11Ö3
Long Leg =
short leg *Ö 3
Slide 43
60°
30°
30°- 60°- 90° Practice
2
4
Short Leg =
Hypotenuse ¸ 2 2Ö3
Long Leg =
short leg *Ö 3
Slide 44
60°
30°
30°- 60°- 90° Practice
9
18
Short Leg =
Hypotenuse ¸ 2 9Ö3
Long Leg =
short leg *Ö 3
Slide 45
60°
30°
30°- 60°- 90° Practice
15
30
Short Leg =
Hypotenuse ¸ 2 15Ö3
Long Leg =
short leg *Ö 3
Slide 46
60°
30°
30°- 60°- 90° Practice
23
46
Hypotenuse =
Short Leg * 2 23Ö3
Short Leg =
Long leg ¸ Ö 3
Slide 47
60°
30°
30°- 60°- 90° Practice
14
28
Hypotenuse =
Short Leg * 2 14Ö3
Short Leg =
Long leg ¸ Ö 3
Slide 48
60°
30°
30°- 60°- 90° Practice
16
32
Hypotenuse =
Short Leg * 2 16Ö3
Short Leg =
Long leg ¸ Ö 3
Slide 49
60°
30°
30°- 60°- 90° Practice
3 Ö3
6Ö3
Hypotenuse =
Short Leg * 2 9
Short Leg =
Long leg ¸ Ö 3
Slide 50
60°
30°
30°- 60°- 90° Practice
4 Ö3
8Ö3
Hypotenuse =
Short Leg * 2 12
Short Leg =
Long leg ¸ Ö 3
Slide 51
60°
30°
30°- 60°- 90° Practice
9 Ö3
18Ö3
Hypotenuse =
Short Leg * 2 27
Short Leg =
Long leg ¸ Ö 3
Slide 52
60°
30°
30°- 60°- 90° Practice
7 Ö3
14Ö3
Hypotenuse =
Short Leg * 2 21
Short Leg =
Long leg ¸ Ö 3
Slide 53
60°
30°
30°- 60°- 90° Practice
11Ö3
22Ö3
Hypotenuse =
Short Leg * 2 33
Short Leg =
Long leg ¸ Ö 3
Tags
long leg
math
short leg
special right triangles
leg
hypotenuse
45-45-90
30-60-90
geometry
isosceles right
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
13,587
Slides
54
Favorites
16
Age
5445 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
32 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
33 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
31 views
14
Fertility awareness methods for women in the society
Isaiah47
30 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
27 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
29 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-54)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better