Statically-Indeterminate-Beams-.pdf

anbarasansivaraj 594 views 39 slides Aug 22, 2022
Slide 1
Slide 1 of 39
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39

About This Presentation

beam


Slide Content

Bending Deflection –
Statically Indeterminate Beams AE1108-II: Aerospace Mechanics of Materials
Aerospace Structures
& Materials Faculty of Aerospace Engineering
Dr. Calvin Rans
Dr. Sofia Teixeira De Freitas

Recap I.Free Body Diagram
II.Equilibrium of Forces (and Moments)
III.Displacement Compatibility
IV.Force-Displacement (Stress-Strain) Relations
V.Answer the Question! –
Typically calculate desired internal
stresses, relevant displacements, or failure criteria
Procedure for Statically Indeterminate Problems
Solve when number of equations = number of unknowns
For bending, Force-Displacement relationships come from
Moment-Curvature relationship
(ie: use Method of Integration or Method of Superposition)

Statically Indeterminate Beams Many more redundancies are possible for beams:
- Draw FBD and count number of redundancies
- Each redundancy gives rise to the need for a
compatibility equation
P
AB
P
V
A
V
B
H
A
M
A
- 4 reactions
- 3 equilibrium equations
4 – 3 = 1
1
st
degree statically indeterminate

Statically Indeterminate Beams Many more redundancies are possible for beams:
- Draw FBD and count number of redundancies
- Each redundancy gives rise to the need for a
compatibility equation
- 6 reactions
- 3 equilibrium equations
6 – 3 = 3
3
rd
degree statically indeterminate
P
AB
P
V
A
V
B
H
A
M
A
H
B
M
B

Solving statically indeterminate
beams using method of integration

What is the difference between a
support and a force?
F
Displacement Compatibility
(support places constraint on deformation)

Method of Integration
P
AB
P
AB
V
B
What if we remove all redundancies
and replace with reaction forces?
If we treat V
B
as known, we
can solve!
Can integrate
to find v
2
2
dv
MEI
dz

Formulate expression for
M(z)

Method of Integration (cont)
P
AB
V
B

2
2
,
B
dvE
IMzV
dz




,
B
E
Iv M z V dz 


(, )
B
E
Iv M z V dz 

C
1
C
2
Determine constants of integration
from Boundary Conditions
AAt A, v = 0, θ= 0
(, )
B
vzV
How to determine V
B
?

Method of Integration (cont)
P
AB
V
B
(, )
B
vzV
How to determine V
B
?
P
AB
=
Compatibility BC:
At B, v = 0
V
B2
P
V
B1
V
B
changes displacement!
Must be compatible! Solve for V
B

Compatibility equations for beams are simply
the boundary conditions at redundant supports

11
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1 Problem Statement
q
AB
Determine deflection equation for
the beam using method of
integration:
Treat reaction forces as knowns!
0
A
FH

2) Equilibrium:1) FBD:
AB
V
A
V
B
H
A
M
A
q
2
2
A
qL
LV 
Solution
AB
FVVqL



2
2
AAB
qL
MMLV

12
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
4) Determine moment equation:
A
V
A
V
M
A
q
M
z
ccw
z
M
M



2
2
AA
q
M
Vz z 
Can also use step function approach

2z
qz 
A
M
A
Vz
M


0
0
A
Mz

0
A
Vz

2
0
2
q
z 

B
VzL
always off
always on

13
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
23
1
26
A
A
Vq
EIv M z z z C    
5) Integrate Moment equation to get
v’ and v
2
2
AA
q
EIv M V z z  
= M(z)

= -EIθ(z)

234
12
2624
AA
MVq
EIv z z z Cz C    
= -EIv(z)
q
AB
We now have expressions for v and v’, but need to determine
constants of integration and unknown reactions
z

14
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
5a) Solve for Constants of Integration
using BC’s:
= -EIθ(z)
= -EIv(z)
q
AB
z
Boundary Conditions:
At z = 0, θ= 0


 
32
1
000 0
62
A
A
V q
EI M C     
1
0 C 

0
0
Fixed support
θ= 0, v = 0
23
1
26
A
A
Vq
EIv M z z z C    
234
12
2624
AA
MVq
EIv z z z Cz C    

15
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
5a) Solve for Constants of Integration
using BC’s:
= -EIθ(z)
= -EIv(z)
q
AB
z
Boundary Conditions:
0
0
Fixed support
θ= 0, v = 0
23
1
26
A
A
Vq
EIv M z z z C    
234
12
2624
AA
MVq
EIv z z z Cz C    
At z = 0, v = 0




43 2
2
0000
24 6 2
AA
VM q
EI C     
2
0 C


0

16
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
5b) Solve for Reaction Forces using
BC’s (imposed by redundant support):
= -EIθ(z)
= -EIv(z)
q
AB
z
Boundary Conditions:
roller support
v = 0
23
26
A
A
Vq
EIv M z z z    
234
2624
AA
MVq
EIv z z z   
At z = L, v = 0




43 2
0
24 6 2
AA
VM q
E
ILLL    
3
4
A
A
M
qL
V
L

Recall from equilibrium:
2
2
A
A
qL
M
LV 
B
A
VqLV

17
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
5b) Solve for Reaction Forces using
BC’s (imposed by redundant support):
q
AB
z
2
3
, ,
42
A
A
AABA
M qL qL
VMLVVqLV
L
  
3
8
B
VqL
5
8
A
VqL
2
8
A
qL
M
AB
V
A
V
B
M
A

18
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
We were asked to determine deflection
equation:
q
AB
z

2
22
352
48
qz
vLLzz
EI

00.51
0
.4
0
.2
0
L
Max Displacement:

223
61580
48
q
vLzLzz
EI

0.5785 zL 
=0
2
(0.5785 ) 0.005416
qL
vL
E
I

234
2624
AA
MVq
EIv z z z   

19
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
Now that the reactions are known:
q
AB
z
5
()
8
qL
Vz EIv qz   
2
()
2
AA
q
M
zEIvMVzz    
22
5
882
qL qLz qz
  
d
dz
M
4
L
2
8
qL

V
5
8
qL
3
8
qL 
5
8
L

Solving statically indeterminate
beams using superposition

Method of Superposition
P
AB
P
V
A
V
B
H
A
M
A
- 4 reactions
- 3 equilibrium equations
1
st
degree statically indeterminate
0
32
A
AB
A
BA
FH
FVVP
M
LV LP M








2) Equilibrium:
1) FBD:
2LL
Determine reaction forces:

Method of Superposition (cont) How do we get compatibility equation?
P
AB
P
AB
V
B
AB
δ
B1
δ
B2
Split into two statically determinate problems
3) Compatibility:
δ
B1
= δ
B2


12
0
BB
vv
Be careful! +ve v

Method of Superposition (cont) How do we get Force-Displacement relations?
Can integrate
to find v
2
2
dv
MEI
dz

We have been doing this in the previous lectures
Integrate Moment Curvature Relation
Standard Case Solutions
P
AB
L
2
2
B
PL
E
I


3
3
B
PL
v
E
I

+
+

Method of Superposition (cont) From the standard case:
P
AB
δ
B1
P
AB
L
2
2
B
PL
E
I


3
3
B
PL
v
E
I

2LL

2
2
22
2
P
PL
P
L
EI EI


1
BPP
vv L


3
14
3
P
L
EI

straight
4) Force-Displacement:

3
2
22
3
PLPL
L
EI EI


Method of Superposition (cont) From the standard case:
V
B
AB
δ
B2

3
3
2
39
3
BB
B
VLVL
v
EI EI


Compatibility:
12
0
BB
vv
3 3
9 14
3
B
VL PL
EI EI



14
27
B
VP 
4) Force-Displacement:
P
AB
L
2
2
B
PL
E
I


3
3
B
PL
v
E
I

Additional remarks about
bending deflections

Remarks about Beam Deflections Recall
Shear deformation
Moment deformation
+
Negligible (for long beams)
Bending Deformation = Shear Deformation + Moment Deformation

+
M M

+
V
V

V(x)
M(x)

Remarks about Beam Deflections
AB
C
P
P
A
P
B
V
BH
B
M
B
B
C
P
V
B
H
B
M
B
A
B
C
P
P
Axial deformation
of AB due to H
B Axial deformation
of BC due to V
B
Axial deformation << bending deformation!

Remark about Beam Deflections
negligible
Deformation = Axial Deformation + Shear Deformation + Moment Deformation
For bending deformation problems
A
P
B
V
BH
B
M
B
BUT!
If moment deformation is not
present, deformation is not negligible

30
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2
A
q
B
D
C
Calculate reaction forces at A and D: First, can we see any simplifications?
Symmetry!
L, EI
Symmetry implies:
- Reactions at A = reactions at D
- Slope at symmetry plane = 0
- Shear force at symmetry plane = 0
We will solve using superposition
and standard cases
A
B
H
F
M
F
q

31
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 Calculate reaction forces:
A
B
H
F
M
F
q V
A
H
A
M
A
1) FBD
2) Equilibrium
A
F
FH H


2
A
qL
FV



2
8
ccw A
AFF
qL
M
MHLM

 

F
Split problem into two: beam AB and beam BF

32
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 Calculate reaction forces:
H
F
F
A
B
H
F
M
F
q
=
A B
M
F
-qL
2
/8
qL/2
+
q
B
H
F
M
F
F
M
F
-qL
2
/8 H
F
qL/2
3) Compatibility

F
0, v
B
0
(axial deformation negligible)

33
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 4a) Force-Displacement for Beam AB
H
F
A
B
M
F
-qL
2
/8
qL/2
H
F
A
B
A B
qL/2
A
B
M
F
-qL
2
/8
3
3
F
BH
L
vE
I


2
2
cwF
B
H
L
E
I



0
B
v
0
B


24
216
F
B
MLqL
v
E
IEI

 
3
8
cwF
B
MLqL
E
IEI


 
++

34
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 4a) Force-Displacement for Beam AB
H
F
A
B
M
F
-qL
2
/8
qL/2
324
3216
FF
B
HL MLqL
v
E
IEIEI


23
28
cwFF
B
HL MLqL
E
IEIEI



0, v 0
FB


Recall compatibility:
0
Still need θ
F

35
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 4b) Force-Displacement for Beam BF

3
2
6
cw
F
qL
E
I



0
F


cwF
F
M
L
E
I



q
B
H
F
M
F
F
M
F
+ qL
2
/8
H
F
qL/2
L/2
B
H
F
FB
M
F
F B
F
q
++
3
48
cwF
F
M
L qL
E
IEI



Wait! Not entirely correct!

36
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2
3
48
cwF
FB
ML qL
EI EI




Previous angle relative to fixed support B
q
B
H
F
M
F
F
θ
B
2 3
2 7
48 2
cwFF
F
M
LHL qL
EI EI EI


 
0

37
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2
0, v 0
FB


2 3
2 7
0
48 2
cwFF
F
ML HL qL
EI EI EI


 
Solve: Recall compatibility:
324
0
3216
FF
B
HL MLqL
v
EI EI EI


28
24
F
F
qL
H
qL
M


A
F
FH H


2
A
qL
FV



2
8
ccw A
AFF
qL
M
MHLM

 
Recall equilibrium:
2
8
2
3
A
A
qL
H
qL
M



38
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2
A
B
H
F
M
F
V
A
H
A
M
A
F
A
q
B
D
C
L, EI
28
24
F
F
qL
H
qL
M


2
8
2
2
3
A
A
A
qL
H
qL
V
qL
M




For next time
Tags