Bending Deflection –
Statically Indeterminate Beams AE1108-II: Aerospace Mechanics of Materials
Aerospace Structures
& Materials Faculty of Aerospace Engineering
Dr. Calvin Rans
Dr. Sofia Teixeira De Freitas
Recap I.Free Body Diagram
II.Equilibrium of Forces (and Moments)
III.Displacement Compatibility
IV.Force-Displacement (Stress-Strain) Relations
V.Answer the Question! –
Typically calculate desired internal
stresses, relevant displacements, or failure criteria
Procedure for Statically Indeterminate Problems
Solve when number of equations = number of unknowns
For bending, Force-Displacement relationships come from
Moment-Curvature relationship
(ie: use Method of Integration or Method of Superposition)
Statically Indeterminate Beams Many more redundancies are possible for beams:
- Draw FBD and count number of redundancies
- Each redundancy gives rise to the need for a
compatibility equation
P
AB
P
V
A
V
B
H
A
M
A
- 4 reactions
- 3 equilibrium equations
4 – 3 = 1
1
st
degree statically indeterminate
Statically Indeterminate Beams Many more redundancies are possible for beams:
- Draw FBD and count number of redundancies
- Each redundancy gives rise to the need for a
compatibility equation
- 6 reactions
- 3 equilibrium equations
6 – 3 = 3
3
rd
degree statically indeterminate
P
AB
P
V
A
V
B
H
A
M
A
H
B
M
B
Solving statically indeterminate
beams using method of integration
What is the difference between a
support and a force?
F
Displacement Compatibility
(support places constraint on deformation)
Method of Integration
P
AB
P
AB
V
B
What if we remove all redundancies
and replace with reaction forces?
If we treat V
B
as known, we
can solve!
Can integrate
to find v
2
2
dv
MEI
dz
Formulate expression for
M(z)
Method of Integration (cont)
P
AB
V
B
2
2
,
B
dvE
IMzV
dz
,
B
E
Iv M z V dz
(, )
B
E
Iv M z V dz
C
1
C
2
Determine constants of integration
from Boundary Conditions
AAt A, v = 0, θ= 0
(, )
B
vzV
How to determine V
B
?
Method of Integration (cont)
P
AB
V
B
(, )
B
vzV
How to determine V
B
?
P
AB
=
Compatibility BC:
At B, v = 0
V
B2
P
V
B1
V
B
changes displacement!
Must be compatible! Solve for V
B
Compatibility equations for beams are simply
the boundary conditions at redundant supports
11
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1 Problem Statement
q
AB
Determine deflection equation for
the beam using method of
integration:
Treat reaction forces as knowns!
0
A
FH
2) Equilibrium:1) FBD:
AB
V
A
V
B
H
A
M
A
q
2
2
A
qL
LV
Solution
AB
FVVqL
2
2
AAB
qL
MMLV
12
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
4) Determine moment equation:
A
V
A
V
M
A
q
M
z
ccw
z
M
M
2
2
AA
q
M
Vz z
Can also use step function approach
2z
qz
A
M
A
Vz
M
0
0
A
Mz
0
A
Vz
2
0
2
q
z
B
VzL
always off
always on
13
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
23
1
26
A
A
Vq
EIv M z z z C
5) Integrate Moment equation to get
v’ and v
2
2
AA
q
EIv M V z z
= M(z)
= -EIθ(z)
234
12
2624
AA
MVq
EIv z z z Cz C
= -EIv(z)
q
AB
We now have expressions for v and v’, but need to determine
constants of integration and unknown reactions
z
14
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
5a) Solve for Constants of Integration
using BC’s:
= -EIθ(z)
= -EIv(z)
q
AB
z
Boundary Conditions:
At z = 0, θ= 0
32
1
000 0
62
A
A
V q
EI M C
1
0 C
0
0
Fixed support
θ= 0, v = 0
23
1
26
A
A
Vq
EIv M z z z C
234
12
2624
AA
MVq
EIv z z z Cz C
15
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
5a) Solve for Constants of Integration
using BC’s:
= -EIθ(z)
= -EIv(z)
q
AB
z
Boundary Conditions:
0
0
Fixed support
θ= 0, v = 0
23
1
26
A
A
Vq
EIv M z z z C
234
12
2624
AA
MVq
EIv z z z Cz C
At z = 0, v = 0
43 2
2
0000
24 6 2
AA
VM q
EI C
2
0 C
0
16
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
5b) Solve for Reaction Forces using
BC’s (imposed by redundant support):
= -EIθ(z)
= -EIv(z)
q
AB
z
Boundary Conditions:
roller support
v = 0
23
26
A
A
Vq
EIv M z z z
234
2624
AA
MVq
EIv z z z
At z = L, v = 0
43 2
0
24 6 2
AA
VM q
E
ILLL
3
4
A
A
M
qL
V
L
Recall from equilibrium:
2
2
A
A
qL
M
LV
B
A
VqLV
17
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
5b) Solve for Reaction Forces using
BC’s (imposed by redundant support):
q
AB
z
2
3
, ,
42
A
A
AABA
M qL qL
VMLVVqLV
L
3
8
B
VqL
5
8
A
VqL
2
8
A
qL
M
AB
V
A
V
B
M
A
18
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
We were asked to determine deflection
equation:
q
AB
z
2
22
352
48
qz
vLLzz
EI
00.51
0
.4
0
.2
0
L
Max Displacement:
223
61580
48
q
vLzLzz
EI
0.5785 zL
=0
2
(0.5785 ) 0.005416
qL
vL
E
I
234
2624
AA
MVq
EIv z z z
19
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 1
Now that the reactions are known:
q
AB
z
5
()
8
qL
Vz EIv qz
2
()
2
AA
q
M
zEIvMVzz
22
5
882
qL qLz qz
d
dz
M
4
L
2
8
qL
V
5
8
qL
3
8
qL
5
8
L
Solving statically indeterminate
beams using superposition
Method of Superposition
P
AB
P
V
A
V
B
H
A
M
A
- 4 reactions
- 3 equilibrium equations
1
st
degree statically indeterminate
0
32
A
AB
A
BA
FH
FVVP
M
LV LP M
2) Equilibrium:
1) FBD:
2LL
Determine reaction forces:
Method of Superposition (cont) How do we get compatibility equation?
P
AB
P
AB
V
B
AB
δ
B1
δ
B2
Split into two statically determinate problems
3) Compatibility:
δ
B1
= δ
B2
12
0
BB
vv
Be careful! +ve v
Method of Superposition (cont) How do we get Force-Displacement relations?
Can integrate
to find v
2
2
dv
MEI
dz
We have been doing this in the previous lectures
Integrate Moment Curvature Relation
Standard Case Solutions
P
AB
L
2
2
B
PL
E
I
3
3
B
PL
v
E
I
+
+
Method of Superposition (cont) From the standard case:
P
AB
δ
B1
P
AB
L
2
2
B
PL
E
I
3
3
B
PL
v
E
I
2LL
2
2
22
2
P
PL
P
L
EI EI
1
BPP
vv L
3
14
3
P
L
EI
straight
4) Force-Displacement:
3
2
22
3
PLPL
L
EI EI
Method of Superposition (cont) From the standard case:
V
B
AB
δ
B2
3
3
2
39
3
BB
B
VLVL
v
EI EI
Compatibility:
12
0
BB
vv
3 3
9 14
3
B
VL PL
EI EI
14
27
B
VP
4) Force-Displacement:
P
AB
L
2
2
B
PL
E
I
3
3
B
PL
v
E
I
Additional remarks about
bending deflections
Remarks about Beam Deflections Recall
Shear deformation
Moment deformation
+
Negligible (for long beams)
Bending Deformation = Shear Deformation + Moment Deformation
+
M M
+
V
V
V(x)
M(x)
Remarks about Beam Deflections
AB
C
P
P
A
P
B
V
BH
B
M
B
B
C
P
V
B
H
B
M
B
A
B
C
P
P
Axial deformation
of AB due to H
B Axial deformation
of BC due to V
B
Axial deformation << bending deformation!
Remark about Beam Deflections
negligible
Deformation = Axial Deformation + Shear Deformation + Moment Deformation
For bending deformation problems
A
P
B
V
BH
B
M
B
BUT!
If moment deformation is not
present, deformation is not negligible
30
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2
A
q
B
D
C
Calculate reaction forces at A and D: First, can we see any simplifications?
Symmetry!
L, EI
Symmetry implies:
- Reactions at A = reactions at D
- Slope at symmetry plane = 0
- Shear force at symmetry plane = 0
We will solve using superposition
and standard cases
A
B
H
F
M
F
q
31
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 Calculate reaction forces:
A
B
H
F
M
F
q V
A
H
A
M
A
1) FBD
2) Equilibrium
A
F
FH H
2
A
qL
FV
2
8
ccw A
AFF
qL
M
MHLM
F
Split problem into two: beam AB and beam BF
32
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 Calculate reaction forces:
H
F
F
A
B
H
F
M
F
q
=
A B
M
F
-qL
2
/8
qL/2
+
q
B
H
F
M
F
F
M
F
-qL
2
/8 H
F
qL/2
3) Compatibility
F
0, v
B
0
(axial deformation negligible)
33
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 4a) Force-Displacement for Beam AB
H
F
A
B
M
F
-qL
2
/8
qL/2
H
F
A
B
A B
qL/2
A
B
M
F
-qL
2
/8
3
3
F
BH
L
vE
I
2
2
cwF
B
H
L
E
I
0
B
v
0
B
24
216
F
B
MLqL
v
E
IEI
3
8
cwF
B
MLqL
E
IEI
++
34
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 4a) Force-Displacement for Beam AB
H
F
A
B
M
F
-qL
2
/8
qL/2
324
3216
FF
B
HL MLqL
v
E
IEIEI
23
28
cwFF
B
HL MLqL
E
IEIEI
0, v 0
FB
Recall compatibility:
0
Still need θ
F
35
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2 4b) Force-Displacement for Beam BF
3
2
6
cw
F
qL
E
I
0
F
cwF
F
M
L
E
I
q
B
H
F
M
F
F
M
F
+ qL
2
/8
H
F
qL/2
L/2
B
H
F
FB
M
F
F B
F
q
++
3
48
cwF
F
M
L qL
E
IEI
Wait! Not entirely correct!
36
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2
3
48
cwF
FB
ML qL
EI EI
Previous angle relative to fixed support B
q
B
H
F
M
F
F
θ
B
2 3
2 7
48 2
cwFF
F
M
LHL qL
EI EI EI
0
37
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2
0, v 0
FB
2 3
2 7
0
48 2
cwFF
F
ML HL qL
EI EI EI
Solve: Recall compatibility:
324
0
3216
FF
B
HL MLqL
v
EI EI EI
28
24
F
F
qL
H
qL
M
A
F
FH H
2
A
qL
FV
2
8
ccw A
AFF
qL
M
MHLM
Recall equilibrium:
2
8
2
3
A
A
qL
H
qL
M
38
Aerospace Mechanics of Materials (AE1108-II) – Example Problem
Example 2
A
B
H
F
M
F
V
A
H
A
M
A
F
A
q
B
D
C
L, EI
28
24
F
F
qL
H
qL
M
2
8
2
2
3
A
A
A
qL
H
qL
V
qL
M