Statistics Formulas ppt

3,983 views 18 slides Nov 10, 2017
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

Submitted by Harjeet Singh
MBA- I semester


Slide Content

Business Statistics Formula’s Submitted By :- Harjeet Singh MBA – I Semester Baddi University Emerging Technology & Science

Formula Individual Series Discrete Series Continuous Series Direct _ ∑X X = ----- N _ ∑fX X = ----- N _ ∑fm X = ------ N Short cut _ ∑d X = A + ----- N _ ∑fd X = A + ----- N _ ∑fd X = A + ----- N Step Deviation _ ∑fd X = A + ----- * i N _ (d= X - X) _ ∑fd X = A + ----- * i N _ (d= X - X) M ean

Mean Correcting Incorrect Mean Average Mean Correct ∑X = Incorrect ∑ X – Wrong Item + Correct Item _ Correct ∑X Correct X = ---------------- N Combined Average Mean:- _ _ _ N 1 X 1 + N 2 X 2 X = ----------------- N 1 + N 2 Weighted Average Mean:- _ ∑WX X = -------- ∑W

Individual Series Discrete Series Continuous Series N+1 Size of --------- th item 2 N+1 Size of --------- th item 2 { N/2 – Cf} L 1 + ------------ * i f (Size of N/2 th item) Median

Computing of Quartiles Individual & Discrete Series Continuous series N + 1 Q 1 = Size of -------- th item 4 3(N + 1) Q 3 =Size of ----------- th item 4 Q 3 - Q 1 QD = ---------- 2 N Q 1 = Size of ---- th item 4 3(N) Q 3 = Size of ------- th item 4 QD = { N/4 – Cf} L 1 + ------------ * i f Q 3 - Q 1 QD Coeff. = ----------- Q 3 + Q 1

Individual series :- 60(N + 1) P 60 = Size of ------------ th item 100 Continuous Series :- 50(N) P 50 = Size of --------- th item 100 P = { N/100 – Cf} L 1 + ------------ * i f Computing of Percentiles

f 1 – f Z = L 1 + ------------ * i 2 f 1 – f – f 2 Z = 3*median – 2*mean Mode

1 ) Range :- L – S L – S Coeff. :- --------- L + S 2) Quartile Deviation :- Individual & Discrete Series :- Q 3 - Q 1 / 2 Continues series :- Q 3 - Q 1 / 2 Q 3 - Q 1 Coeff . = ----------- Q 3 + Q 1 Dispersion

3) Mean Deviation :- ∑|d| Individual Series = -------- N ∑ f |d| Discrete & Continues Series = --------- N Mean Deviation Coeff. = ----------------------- Median

4) Standard Deviation :- Individual Series:- _______ Actual Mean (σ) = ⎷ ∑ x 2 / N ________________ Assumed Mean (σ) = ⎷ ∑d 2 /N - (∑d / N) 2 Discrete Series:- ________ Actual Mean (σ) = ⎷ ∑ fx 2 / N _______________ Assumed Mean (σ) = ⎷ ∑ fd 2 /N - (∑fd / N ) 2 ________________ Continues Series (σ) = ⎷ ∑ fd 2 /N - (∑fd / N ) 2 * i

_ _ _ N 1 X 1 + N 2 X 2 5) Combined Mean X 12 = ------------------ N 1 + N 2 6) Combined Standard Deviation :- ________________________________________ | N 1 σ 1 2 + N 2 σ 2 2 + N 3 σ 3 2 + N 1 d 1 2 + N 2 d 2 2 + N 3 d 3 2 (σ) =⎷ ----------------------------------------------------------------- N 1 + N 2 + N 3 _ _ _ _ d1 = |X1 - X123| d2 = |X2 - X123| _ _ d3 = |X3 - X123| _ Coefficient of Variance = σ / X * 100

Karl Pearson's Skewness :- SK P = Mean – Mode / Standard Deviation 2) Bowley’s Skewness :- SK B = Q 3 + Q 1 – 2 Median / Q 3 - Q 1 3) Kelly’s Skewness :- SK K = P 10 + P 90 – 2 Median / P 9 - P 10 Skewness

1) Laspayer’s Method P 01 = ∑p 1 q / ∑p q * 100 2) Paasch’s Method P 01 = ∑p 1 q 1 / ∑p q 1 * 100 3) Bowley’s Method = Laspayer’s + Paasch’s / 2 ___________________ 4) Fisher’s Method = ⎷ Laspayer’s * Paasch’s 5) Marshal Method = ∑p 1 q + ∑p 1 q 1 / ∑p q + ∑p q 1 * 100 6) Kelly ‘s Method = p 1 q / p 1 q *100 Index Number

Time reversal Test :- P 01 * P 10 = 1 Factor Reversal Test:- p 01 * q 01 = ∑p 1 q 1 / ∑p q Weighted Average Relative Method:- P 01 = ∑pv / ∑v = ∑p 1 / ∑p * 100 (P = Price Relative )

Actual Mean :- ∑ xy ∑xy r = --------- or ------------ N σx σy ⎷ ∑ x 2 * ∑ y 2 Assumed Mean :- N ∑dx dy - ∑dx * ∑dy r = --------------------------------- ⎷ N ∑dx 2 - (∑dx) 2 * ⎷ N ∑dy 2 - (∑dy) 2 Karl Pearson’s Correlative Co-efficient

Regression Equation of (X on Y) :- _ σy _ (X – X) = r ------ (Y - Y) σx σx N ∑dx dy - ∑dx * ∑dy r------ = ------------------ σy ⎷ N ∑dy 2 - (∑dy) 2 Regression

2) Regression Equation of (Y on X) :- _ σy _ (Y – Y) = r ------ (X - X) σx σy N ∑dx dy - ∑dx * ∑dy r------ = -------------------- σx ⎷ N ∑dx 2 - (∑dx) 2 _ ∑x _ ∑y X = ------ ; Y = ------ N N

Regression Coefficient :- r = ⎷bxy * byx Time Series:- Yc = a + bx a = ∑y / n b = ∑xy / ∑x 2