STATISTICSStatistics is the branch of mathematics that involves the collection, analysis, interpretation, presentation, and organization of data. It is used to understand and draw conclusions from data by using mathematical theories and methodologies.

MharJustinMacalinao 22 views 69 slides Jul 31, 2024
Slide 1
Slide 1 of 69
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69

About This Presentation

STATSTICS LECTURE Statistics is the branch of mathematics that involves the collection, analysis, interpretation, presentation, and organization of data. It is used to understand and draw conclusions from data by using mathematical theories and methodologies.


Slide Content

Lecture 3 Measures of Central Tendency and Measures of Dispersion Benjamin Alvarez Dillena Jr., Ed.D.

Measures of Central Tendency  

Measures of Central Tendency   Advantage Used for both continuous and discrete numeric data Disadvantage Cannot be used for qualitative data Influence by outliers

Measures of Central Tendency    

Measures of Central Tendency   Advantage Less affected by outliers Disadvantage Cannot be identified for categorical nominal data  

Measures of Central Tendency Mode (Mo) Similar to the Statistical mean and median, Mode is a way of representing important information about random variables or populations in a single number. In a normal Distribution, the value of Mode or modal value is the same as the mean and median whereas the value of Mode in a highly skewed Distribution may be very different. Mode is the most useful measure of central tendency while observing the categorical data such as the most preferred flavors of soda or Models of bikes for which average median values based on Order cannot be calculated.

Measures of Central Tendency Mode (Mo) Types of Mode The different types of Mode are Unimodal, Bimodal, Trimodal, and Multimodal. Unimodal Mode - A set of data with one Mode is known as a Unimodal Mode. For example , the Mode of data set A = { 14, 15, 16, 17, 15, 18, 15, 19} is 15 as there is only one value repeating itself. Hence, it is a Unimodal data set.

Measures of Central Tendency Mode (Mo) Types of Mode The different types of Mode are Unimodal, Bimodal, Trimodal, and Multimodal. Bimodal Mode - A set of data with two Modes is known as a Bimodal Mode. This means that there are two data values that are having the highest frequencies. For example , the Mode of data set A = { 8,13,13,14,15,17,17,19} is 13 and 17 because both 13 and 17 are repeating twice in the given set. Hence, it is a Bimodal data set.

Measures of Central Tendency Mode (Mo) Types of Mode The different types of Mode are Unimodal, Bimodal, Trimodal, and Multimodal. Trimodal Mode - A set of data with three Modes is known as a Trimodal Mode. This means that there are three data values that are having the highest frequencies. For example , the Mode of data set A = {2, 2, 2, 3, 4, 4, 5, 6, 5,4, 7, 5, 8} is 2 , 4 , and 5 because all the three values are repeating thrice in the given set. Hence, it is a Trimodal data set. Multimodal Mode - A set of data with four or more than four Modes is known as a Multimodal Mode. For example, The Mode of data set A = {100, 80, 80, 95, 95, 100, 90, 90,100 ,95 } is 80, 90, 95, and 100 because both all the four values are repeated twice in the given set. Hence, it is a Multimodal data set.

Measures of Central Tendency Mode (Mo) Types of Mode The different types of Mode are Unimodal, Bimodal, Trimodal, and Multimodal. Multimodal Mode - A set of data with four or more than four Modes is known as a Multimodal Mode. For example , The Mode of data set A = {100, 80, 80, 95, 95, 100, 90, 90} is 80 , 90 , 95 , and 100 because both all the four values are repeated twice in the given set. Hence, it is a Multimodal data set.

Measures of Central Tendency     Advantage Available for both numerical and categorical data Disadvantage May not effect the center of distribution very well

Summary of when to Use the Mean, Median and Mode Type of Variable Best Measure of Central Tendency Nominal Mode Ordinal Median Interval/Ratio (not skewed) Mean Interval/Ratio (skewed) Median Mean < Median Negative (Left-skewness) Mean = Median Symmetry (Zero-skewness) Mean > Median Positive (Right-skewness)

Fractiles/ Other Measures of Central Tendency  

Fractiles/ Other Measures of Central Tendency  

Fractiles/ Other Measures of Central Tendency  

Measures of Variation / Measures of Dispersion A measure of variation shows the extent to which numerical values tend to spread out over the average. A suitable measure should be large when the value vary over a wide range and should be small when the range of variation is not too great. A measure of dispersion is a method of measuring the degree by which numerical data or values tend to spread from or cluster about a central point of average.

Measures of Variation / Measures of Dispersion The Range The Mean Absolute Deviation The Percentile Deviation The Decile Deviation The Quartile Deviation The Inter-quartile Range The Variance The Standard Deviation

The Range      

The Mean Absolute Deviation (MAD)    

The Quantile Deviation Another way of measuring the variability of an observation is through quantile deviation, these are: Percentile Deviation (PD) Decile Deviation (DD) Quartile Deviation (QD) Inter-quartile Range (IR)

The Percentile Deviation (PD)    

The Decile Deviation (DD)    

The Quartile Deviation (QD)    

    The Inter-quartile Range (IR)

      Variance

Standard Deviation  

Measures of Central Tendency  

Measures of Central Tendency Example No. 1 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 80 , Q 3 , and D 3 ) of the following data: 67, 90, 77, 33, 30, 33, 65, 66, 80, & 70. N 1 2 3 4 5 6 7 8 9 10 Σx 611 Solution for Mean:       30 33 33 65 66 67 70 77 80 90

N 1 2 3 4 5 6 7 8 9 10 Σx 611 30 33 33 65 66 67 70 77 80 90 Solution for Median:     Since N = 10, the median is between 5 th and 6 th scores.   Measures of Central Tendency Example No. 1 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 80 , Q 3 , and D 3 ) of the following data: 67, 90, 77, 33, 30, 33, 65, 66, 80, & 70.

N 1 2 3 4 5 6 7 8 9 10 Σx 611 30 33 33 65 66 67 70 77 80 90 Solution for Mode:   Observed the given data: If mode is 1 = unimodal; 2 = bimodal; 3 = Trimodal; & 4 & ↑ = multimodal Measures of Central Tendency Example No. 1 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 80 , Q 3 , and D 3 ) of the following data: 67, 90, 77, 33, 30, 33, 65, 66, 80, & 70.

N 1 2 3 4 5 6 7 8 9 10 Σx 611 30 33 33 65 66 67 70 77 80 90 Solution for Percentile 80:         Measures of Central Tendency Example No. 1 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 80 , Q 3 , and D 3 ) of the following data: 67, 90, 77, 33, 30, 33, 65, 66, 80, & 70.

N 1 2 3 4 5 6 7 8 9 10 Σx 611 30 33 33 65 66 67 70 77 80 90 Solution for Quartile 3:         Measures of Central Tendency Example No. 1 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 80 , Q 3 , and D 3 ) of the following data: 67, 90, 77, 33, 30, 33, 65, 66, 80, & 70.

N 1 2 3 4 5 6 7 8 9 10 Σx 611 30 33 33 65 66 67 70 77 80 90 Solution for Decile 3:         Measures of Central Tendency Example No. 1 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 80 , Q 3 , and D 3 ) of the following data: 67, 90, 77, 33, 30, 33, 65, 66, 80, & 70.

Measures of Central Tendency Example No. 2 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 60 , Q 1 , and D 9 ) of the following data: 16, 24, 11, 30, 30, 27, 18, 32, 25. N 1 2 3 4 5 6 7 8 9 Σx 213 11 16 18 24 25 27 30 30 32 Solution for Mean:      

Measures of Central Tendency Example No. 2 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 60 , Q 1 , and D 9 ) of the following data: 16, 24, 11, 30, 30, 27, 18, 32, 25. N 1 2 3 4 5 6 7 8 9 Σx 213 11 16 18 24 25 27 30 30 32 Solution for Median:    

Measures of Central Tendency Example No. 2 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 60 , Q 1 , and D 9 ) of the following data: 16, 24, 11, 30, 30, 27, 18, 32, 25. N 1 2 3 4 5 6 7 8 9 Σx 213 11 16 18 24 25 27 30 30 32 Solution for Mode:  

Measures of Central Tendency Example No. 2 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 60 , Q 1 , and D 9 ) of the following data: 16, 24, 11, 30, 30, 27, 18, 32, 25. N 1 2 3 4 5 6 7 8 9 Σx 213 11 16 18 24 25 27 30 30 32 Solution for Percentile 60:          

Measures of Central Tendency Example No. 2 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 60 , Q 1 , and D 9 ) of the following data: 16, 24, 11, 30, 30, 27, 18, 32, 25. N 1 2 3 4 5 6 7 8 9 Σx 213 11 16 18 24 25 27 30 30 32 Solution for Quartile 1:          

Measures of Central Tendency Example No. 2 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (P 60 , Q 1 , and D 9 ) of the following data: 16, 24, 11, 30, 30, 27, 18, 32, 25. N 1 2 3 4 5 6 7 8 9 Σx 213 11 16 18 24 25 27 30 30 32 Solution for Decile 9:          

Measures of Central Tendency Example No. 3 Find the measures of central tendency (Mean, Median, and Mode) and the other measures of central tendency (Q 3 , P 65 , and D 8 ) of the following data: Class Interval 32 - 39 11 40 - 47 19 48 - 55 13 56 - 63 22 64 - 71 15

Measures of Central Tendency Example No. 3 Solution for Mean:       Class Interval Class Boundaries <CF 32 - 39 11 40 - 47 19 48 - 55 13 56 - 63 22 64 - 71 15 i = Σf = Σfx = 80 8 35.5 43.5 51.5 59.5 67.5 390.5 826.5 669.5 1309 1012.5 4208 31.5 – 39.5 39.5 – 47.5 47.5 – 55.5 55.5 – 63.5 63.5 – 71.5 Mean, Median, Mode, Q 3 , P 65 , and D 8 11 30 43 65 80

Class Interval Class Boundaries <CF 32 - 39 11 40 - 47 19 48 - 55 13 56 - 63 22 64 - 71 15 i = Σf = Σfx = 80 8 35.5 43.5 51.5 59.5 67.5 4208 31.5 – 39.5 39.5 – 47.5 47.5 – 55.5 55.5 – 63.5 63.5 – 71.5 11 Solution for Median:         30 43 65 80 390.5 826.5 669.5 1309 1012.5 80 69 50 37 15     >CF   Measures of Central Tendency Example No. 3 Mean, Median, Mode, Q 3 , P 65 , and D 8

Class Interval Class Boundaries <CF 32 - 39 11 40 - 47 19 48 - 55 13 56 - 63 22 64 - 71 15 i = Σf = Σfx = 80 8 35.5 43.5 51.5 59.5 67.5 4208 31.5 – 39.5 39.5 – 47.5 47.5 – 55.5 55.5 – 63.5 63.5 – 71.5 11 Solution for Median:   30 43 65 80 390.5 826.5 669.5 1309 1012.5 80 69 50 37 15     >CF   Measures of Central Tendency Example No. 3 Mean, Median, Mode, Q 3 , P 65 , and D 8

Class Interval Class Boundaries <CF 32 - 39 11 40 - 47 19 48 - 55 13 56 - 63 22 64 - 71 15 i = Σf = Σfx = 80 8 35.5 43.5 51.5 59.5 67.5 4208 31.5 – 39.5 39.5 – 47.5 47.5 – 55.5 55.5 – 63.5 63.5 – 71.5 11 30 43 65 80 Solution for Mode:         390.5 826.5 669.5 1309 1012.5 Measures of Central Tendency Example No. 3 Mean, Median, Mode, Q 3 , P 65 , and D 8

Class Interval Class Boundaries <CF 32 - 39 11 40 - 47 19 48 - 55 13 56 - 63 22 64 - 71 15 i = Σf = Σfx = 80 8 35.5 43.5 51.5 59.5 67.5 4208 31.5 – 39.5 39.5 – 47.5 47.5 – 55.5 55.5 – 63.5 63.5 – 71.5 11 30 43 65 80 Solution for Quartile 3:         390.5 826.5 669.5 1309 1012.5 Measures of Central Tendency Example No. 3 Mean, Median, Mode, Q 3 , P 65 , and D 8

Class Interval Class Boundaries <CF 32 - 39 11 40 - 47 19 48 - 55 13 56 - 63 22 64 - 71 15 i = Σf = Σfx = 80 8 35.5 43.5 51.5 59.5 67.5 4208 31.5 – 39.5 39.5 – 47.5 47.5 – 55.5 55.5 – 63.5 63.5 – 71.5 11 30 43 65 80 Solution for Percentile 65:         390.5 826.5 669.5 1309 1012.5 Measures of Central Tendency Example No. 3 Mean, Median, Mode, Q 3 , P 65 , and D 8

Class Interval Class Boundaries <CF 32 - 39 11 40 - 47 19 48 - 55 13 56 - 63 22 64 - 71 15 i = Σf = Σfx = 80 8 35.5 43.5 51.5 59.5 67.5 4208 31.5 – 39.5 39.5 – 47.5 47.5 – 55.5 55.5 – 63.5 63.5 – 71.5 11 30 43 65 80 Solution for Decile 8:         390.5 826.5 669.5 1309 1012.5 Measures of Central Tendency Example No. 3 Mean, Median, Mode, Q 3 , P 65 , and D 8

Measures of Central Tendency Example No. 4 Below are the responses of 130 students in a survey conducted: Question Response T 5 4 3 2 1 Gives concise but clear directions for students to follow. 25 44 33 15 13 130 125 176 99 30 13 443     Using the descriptive ratings below, determine their weighted mean response. 5 – Very Effective 4.20 – 5.00 4 – Significantly Effective 3.40 – 4.19 3 – Moderately Effective 2.60 – 3.39 2 – Slightly Effective 1.80 – 2.59 1 – Not Effective 1.00 – 1.79 Solution: Verbal Description: Significantly Effective

Measures of Dispersion Example No. 5 Given: Find the following: The Range The Mean Absolute Deviation The Percentile Deviation/The Decile Deviation The Quartile Deviation/The Inter-quartile Range The Variance (s 2 and σ 2 ) The Standard Deviation (s and σ) 25 78 42 23 18 18 68 77 83 80 48 36

 N  1  2  3  4  5  6  7  8  9  10  11  12  Σ 18 18 23 25 36 42 48 68 77 78 80 83 596 31.67 31.67 26.67 24.67 13.67 7.67 1.67 18.33 27.33 28.33 30.33 33.33 275.34 1002.9889 1002.9889 711.2889 608.6089 186.8689 58.8289 2.7889 335.9889 746.9289 802.5889 919.9089 1110.8889 7490.6668 Solution: The Mean          

 N  1  2  3  4  5  6  7  8  9  10  11  12  Σ 18 18 23 25 36 42 48 68 77 78 80 83 596 31.67 31.67 26.67 24.67 13.67 7.67 1.67 18.33 27.33 28.33 30.33 33.33 275.34 1002.9889 1002.9889 711.2889 608.6089 186.8689 58.8289 2.7889 335.9889 746.9289 802.5889 919.9089 1110.8889 7490.6668 Solution: The MAD      

 N  1  2  3  4  5  6  7  8  9  10  11  12  Σ 18 18 23 25 36 42 48 68 77 78 80 83 596 31.67 31.67 26.67 24.67 13.67 7.67 1.67 18.33 27.33 28.33 30.33 33.33 275.34 1002.9889 1002.9889 711.2889 608.6089 186.8689 58.8289 2.7889 335.9889 746.9289 802.5889 919.9089 1110.8889 7490.6668 Solution: Percentile Deviation                    

 N  1  2  3  4  5  6  7  8  9  10  11  12  Σ 18 18 23 25 36 42 48 68 77 78 80 83 596 31.67 31.67 26.67 24.67 13.67 7.67 1.67 18.33 27.33 28.33 30.33 33.33 275.34 1002.9889 1002.9889 711.2889 608.6089 186.8689 58.8289 2.7889 335.9889 746.9289 802.5889 919.9089 1110.8889 7490.6668 Solution: Decile Deviation                    

 N  1  2  3  4  5  6  7  8  9  10  11  12  Σ 18 18 23 25 36 42 48 68 77 78 80 83 596 31.67 31.67 26.67 24.67 13.67 7.67 1.67 18.33 27.33 28.33 30.33 33.33 275.34 1002.9889 1002.9889 711.2889 608.6089 186.8689 58.8289 2.7889 335.9889 746.9289 802.5889 919.9089 1110.8889 7490.6668 Solution: Quartile Deviation                    

 N  1  2  3  4  5  6  7  8  9  10  11  12  Σ 18 18 23 25 36 42 48 68 77 78 80 83 596 31.67 31.67 26.67 24.67 13.67 7.67 1.67 18.33 27.33 28.33 30.33 33.33 275.34 1002.9889 1002.9889 711.2889 608.6089 186.8689 58.8289 2.7889 335.9889 746.9289 802.5889 919.9089 1110.8889 7490.6668 Solution:    

 N  1  2  3  4  5  6  7  8  9  10  11  12  Σ 18 18 23 25 36 42 48 68 77 78 80 83 596 31.67 31.67 26.67 24.67 13.67 7.67 1.67 18.33 27.33 28.33 30.33 33.33 275.34 1002.9889 1002.9889 711.2889 608.6089 186.8689 58.8289 2.7889 335.9889 746.9289 802.5889 919.9089 1110.8889 7490.6668 Solution: Population Variance (σ 2 )  

Example No. 2 # of CI Class Interval Class Boundaries <CF 1 37 – 43 8 2 44 – 50 9 3 51 – 57 7 4 58 – 64 11 5 65 – 71 10 6 72 – 78 19 7 79 – 85 14 8 86 – 92 9 9 93 - 99 13 40 47 54 61 68 75 82 89 96 i = 7 100 320 423 378 671 680 1425 1148 801 1248 7094 36.5 – 43.5 43.5 – 50.5 50.5 – 57.5 57.5 – 64.5 64.5 -71.5 71.5 – 78.5 78.5 – 85.5 85.5 – 92.5 92.5 – 99.5 8 17 24 35 45 64 78 87 100 30.94 23.94 16.94 9.94 2.94 4.06 11.06 18.06 25.06 247.52 215.46 118.58 109.34 29.40 77.14 154.84 162.54 325.78 7658.2688 5158.1124 2008.7452 1086.8396 86.4360 313.1884 1712.5304 2935.4724 8164.0468 29123.64 Solution :       1440.60

Example No. 2 # of CI Class Interval Class Boundaries <CF 1 37 – 43 8 2 44 – 50 9 3 51 – 57 7 4 58 – 64 11 5 65 – 71 10 6 72 – 78 19 7 79 – 85 14 8 86 – 92 9 9 93 - 99 13 40 47 54 61 68 75 82 89 96 i = 7 100 320 423 378 671 680 1425 1148 801 1248 7094 36.5 – 43.5 43.5 – 50.5 50.5 – 57.5 57.5 – 64.5 64.5 -71.5 71.5 – 78.5 78.5 – 85.5 85.5 – 92.5 92.5 – 99.5 8 17 24 35 45 64 78 87 100 30.94 23.94 16.94 9.94 2.94 4.06 11.06 18.06 25.06 247.52 215.46 118.58 109.34 29.40 77.14 154.84 162.54 325.78 7658.2688 5158.1124 2008.7452 1086.8396 86.4360 313.1884 1712.5304 2935.4724 8164.0468 29123.64 1440.60 The Range      

# of CI Class Interval Class Boundaries <CF 1 37 – 43 8 2 44 – 50 9 3 51 – 57 7 4 58 – 64 11 5 65 – 71 10 6 72 – 78 19 7 79 – 85 14 8 86 – 92 9 9 93 - 99 13 40 47 54 61 68 75 82 89 96 i = 7 100 320 423 378 671 680 1425 1148 801 1248 7094 36.5 – 43.5 43.5 – 50.5 50.5 – 57.5 57.5 – 64.5 64.5 -71.5 71.5 – 78.5 78.5 – 85.5 85.5 – 92.5 92.5 – 99.5 8 17 24 35 45 64 78 87 100 30.94 23.94 16.94 9.94 2.94 4.06 11.06 18.06 25.06 247.52 215.46 118.58 109.34 29.40 77.14 154.84 162.54 325.78 7658.2688 5158.1124 2008.7452 1086.8396 86.4360 313.1884 1712.5304 2935.4724 8164.0468 29123.64 1440.60 The MAD      

Solution: Percentile Deviation                                    

Solution: Decile Deviation                                  

Solution: Quartile Deviation                                      

# of CI Class Interval Class Boundaries <CF 1 37 – 43 8 2 44 – 50 9 3 51 – 57 7 4 58 – 64 11 5 65 – 71 10 6 72 – 78 19 7 79 – 85 14 8 86 – 92 9 9 93 - 99 13 40 47 54 61 68 75 82 89 96 i = 7 100 320 423 378 671 680 1425 1148 801 1248 7094 36.5 – 43.5 43.5 – 50.5 50.5 – 57.5 57.5 – 64.5 64.5 -71.5 71.5 – 78.5 78.5 – 85.5 85.5 – 92.5 92.5 – 99.5 8 17 24 35 45 64 78 87 100 30.94 23.94 16.94 9.94 2.94 4.06 11.06 18.06 25.06 247.52 215.46 118.58 109.34 29.40 77.14 154.84 162.54 325.78 7658.2688 5158.1124 2008.7452 1086.8396 86.4360 313.1884 1712.5304 2935.4724 8164.0468 29123.64 1440.60 Sample Variance        

# of CI Class Interval Class Boundaries <CF 1 37 – 43 8 2 44 – 50 9 3 51 – 57 7 4 58 – 64 11 5 65 – 71 10 6 72 – 78 19 7 79 – 85 14 8 86 – 92 9 9 93 - 99 13 40 47 54 61 68 75 82 89 96 i = 7 100 320 423 378 671 680 1425 1148 801 1248 7094 36.5 – 43.5 43.5 – 50.5 50.5 – 57.5 57.5 – 64.5 64.5 -71.5 71.5 – 78.5 78.5 – 85.5 85.5 – 92.5 92.5 – 99.5 8 17 24 35 45 64 78 87 100 30.94 23.94 16.94 9.94 2.94 4.06 11.06 18.06 25.06 247.52 215.46 118.58 109.34 29.40 77.14 154.84 162.54 325.78 7658.2688 5158.1124 2008.7452 1086.8396 86.4360 313.1884 1712.5304 2935.4724 8164.0468 29123.64 1440.60 Sample Standard Deviation  

# of CI Class Interval Class Boundaries <CF 1 37 – 43 8 2 44 – 50 9 3 51 – 57 7 4 58 – 64 11 5 65 – 71 10 6 72 – 78 19 7 79 – 85 14 8 86 – 92 9 9 93 - 99 13 40 47 54 61 68 75 82 89 96 i = 7 100 320 423 378 671 680 1425 1148 801 1248 7094 36.5 – 43.5 43.5 – 50.5 50.5 – 57.5 57.5 – 64.5 64.5 -71.5 71.5 – 78.5 78.5 – 85.5 85.5 – 92.5 92.5 – 99.5 8 17 24 35 45 64 78 87 100 30.94 23.94 16.94 9.94 2.94 4.06 11.06 18.06 25.06 247.52 215.46 118.58 109.34 29.40 77.14 154.84 162.54 325.78 7658.2688 5158.1124 2008.7452 1086.8396 86.4360 313.1884 1712.5304 2935.4724 8164.0468 29123.64 1440.60 Population Variance        

# of CI Class Interval Class Boundaries <CF 1 37 – 43 8 2 44 – 50 9 3 51 – 57 7 4 58 – 64 11 5 65 – 71 10 6 72 – 78 19 7 79 – 85 14 8 86 – 92 9 9 93 - 99 13 40 47 54 61 68 75 82 89 96 i = 7 100 320 423 378 671 680 1425 1148 801 1248 7094 36.5 – 43.5 43.5 – 50.5 50.5 – 57.5 57.5 – 64.5 64.5 -71.5 71.5 – 78.5 78.5 – 85.5 85.5 – 92.5 92.5 – 99.5 8 17 24 35 45 64 78 87 100 30.94 23.94 16.94 9.94 2.94 4.06 11.06 18.06 25.06 247.52 215.46 118.58 109.34 29.40 77.14 154.84 162.54 325.78 7658.2688 5158.1124 2008.7452 1086.8396 86.4360 313.1884 1712.5304 2935.4724 8164.0468 29123.64 1440.60 Population Standard Deviation  

Activity Find the Mean, Median, Mode , Variance (Sample & Population) and Standard Deviation (Sample & Population) of the following data: 16, 24, 11, 30, 30, 27, 18, 32, 25. N 1 2 3 4 5 6 7 8 9 Σx 213 11 16 18 24 25 27 30 30 32