structural analysis-Chapter1 - upload.pdf

AliSahraei5 67 views 26 slides May 21, 2024
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

Related to the Structures I


Slide Content

1
Lecturer: Dr. Mohammad Ali Sahraei
Faculty of Engineering
Structures I

2
•Introduction
•Fundamental of Structural Theory
•Classification
•Loads
•Structural Design
Structures I

3
Onceapreliminarydesignofastructureisproposed,
thestructuremustthenbeanalyzedtoensurethatithasits
requiredstiffnessandstrength.
Toanalyzeastructureproperly,certainidealizations
mustbemadeastohowthemembersaresupportedand
connectedtogether.
Theloadingsaredeterminedfromcodesandlocal
specifications,andtheforcesinthemembersandtheir
displacementsarefoundusingthetheoryofstructural
analysis,whichisthesubjectmatterofthistext.
Structures I

4
Itisimportantforastructuralengineertorecognizethe
varioustypesofelementscomposingastructureandtobe
abletoclassifystructuresastotheirformandfunction.We
willintroducesomeoftheseaspectsnowandexpandon
thematappropriatepointsthroughoutthetext.
Classification of Structures
StructuralElements.Someofthe
morecommonelementsfromwhich
structuresarecomposedareasfollows.
TieRods:Structuralmembers
subjectedtoatensileforceareoften
referredtoastierodsorbracingstruts.
Duetothenatureofthisload,these
membersareratherslender,andare
oftenchosenfromrods,bars,angles,or
channels,Fig.1–1.

5
Beams:Beamsareusuallystraighthorizontalmembers
usedprimarilytocarryverticalloads.Quiteoftentheyare
classifiedaccordingtothewaytheyaresupported,as
indicatedinFig.1–2.Inparticular,whenthecrosssection
variesthebeamisreferredtoastaperedorhaunched.Beam
crosssectionsmayalsobe“builtup”byaddingplatesto
theirtopandbottom.
Classification of Structures

6
Classification of Structures
Tapered Beam

7
Whenthematerialusedforabeamisametalsuchas
steeloraluminum,thecrosssectionismostefficientwhenit
isshapedasshowninFig.1–3.
Heretheforcesdevelopedinthetopandbottomflanges
ofthebeamformthenecessarycoupleusedtoresistthe
appliedmomentM,whereasthewebiseffectiveinresisting
theappliedshearV.
Classification of Structures

8
Classification of Structures

9
Columns:Membersthatare
generallyverticalandresist
axialcompressiveloadsare
referredtoascolumns,Fig.1–4.
Tubesandwide-flangecross
sectionsareoftenusedformetal
columns,andcircularand
squarecrosssectionswith
reinforcingrodsareusedfor
thosemadeofconcrete.
Occasionally,columnsare
subjectedtobothanaxialload
andabendingmomentasshown
inthefigure.Thesemembers
arereferredtoasbeamcolumns.
Classification of Structures

10
Thecombinationofstructuralelementsandthematerials
fromwhichtheyarecomposedisreferredtoasastructural
system.Eachsystemisconstructedofoneormoreoffour
basictypesofstructures.Rankedinorderofcomplexityof
theirforceanalysis,theyareasfollows.
Trusses:Whenthespanofastructureisrequiredtobe
largeanditsdepthisnotanimportantcriterionfordesign,a
trussmaybeselected.Trussesconsistofslenderelements,
usuallyarrangedintriangularfashion.Planartrussesare
composedofmembersthatlieinthesameplaneandare
frequentlyusedforbridgeandroofsupport,whereasspace
trusseshavemembersextendinginthreedimensionsandare
suitableforderricksandtowers.
Types of Structures

11
Types of Structures
Derrick

12
CablesandArches:Twootherformsofstructuresused
tospanlongdistancesarethecableandthearch.Cablesare
usuallyflexibleandcarrytheirloadsintension.Theyare
commonlyusedtosupportbridges,(Figure),andbuilding
roofs.Whenusedforthesepurposes,thecablehasan
advantageoverthebeamandthetruss,especiallyforspans
thataregreaterthan150ft(46m).
Types of Structures

13
Thearchachievesitsstrengthincompression,sinceit
hasareversecurvaturetothatofthecable.Thearchmustbe
rigid,however,inordertomaintainitsshape,andthisresults
insecondaryloadingsinvolvingshearandmoment,which
mustbeconsideredinitsdesign.Archesarefrequentlyused
inbridgestructures,(Figure),domeroofs,andforopeningsin
masonrywalls.
Types of Structures

14
Frames:Framesareoftenused
inbuildingsandarecomposedof
beamsandcolumnsthatareeither
pinorfixedconnected,Fig.1–7.
Liketrusses,framesextendintwo
orthreedimensions.Theloadingon
aframecausesbendingofits
members,andifithasrigidjoint
connections,thisstructureis
generally“indeterminate”froma
standpointofanalysis.Thestrength
ofsuchaframeisderivedfromthe
momentinteractionsbetweenthe
beamsandthecolumnsattherigid
joints.
Types of Structures

15
SurfaceStructures:Asurfacestructureismadefroma
materialhavingaverysmallthicknesscomparedtoitsother
dimensions.Sometimesthismaterialisveryflexibleandcan
taketheformofatentorair-inflatedstructure.Inbothcases
thematerialactsasamembranethatissubjectedtopure
tension.
Surfacestructuresmayalsobemadeofrigidmaterialsuch
asreinforcedconcrete.Assuchtheymaybeshapedasfolded
plates,cylinders,orhyperbolicparaboloids,andarereferredto
asthinplatesorshells.
Types of Structures

16
Classification of Structures

17
Classification of Structures

18
Structure
•“a system of connected parts used to support a load”
Design of Structures
•Safety
•Esthetics
•Serviceability
•Environment
•Economy
Analysis of Structures
•Strength
•Rigidity
Idealization of Structures
•Physical Model
•Mathematical Model
Fundamental of Structural Theory

19
Idealization
•Physical Model
•Members
•Connections
•Supports
•Loads
•Free-body Diagrams
•System
•Member
Mathematical Model
•Equilibrium Conditions
•Compatibility Conditions
•Constitutive Relationship
Fundamental of Structural Theory

20
Equilibrium conditions
Mathematical Model
Compatibility conditions
•Continuity condition
•Boundary condition
Constitutive relationship of stress and strain

21
Loads
Dead Loads
Live Loads
•Building Loads
•Bridge Loads
Wind Loads
Snow Loads
Earthquake Loads
Hydrostatic and Soil Pressure
Other Natural Loads

22
Codes
General Building Codes
•MinimumDesignLoadsforBuildingandother
Structures,ANSI/ASCE7-95,AmericanSociety
ofCivilEngineers
•BasicBuildingCode,BuildingOfficialsandCode
AdministratorsInternational(BOCA)
•StandardBuildingCode,SouthernBuildingCode
CongressInternational
•UniformBuildingCode,InternationalConference
ofBuildingOfficials(UBC)

23
Codes
Design Codes
•BuildingCodeRequirementsforReinforcedConcrete,Am.
Conc.Inst.(ACI)
•ManualofSteelConstruction,AmericanInstituteofSteel
Construction(AISC)
•StandardSpecificationsforHighwayBridges,American
AssociationofState
•HighwayandTransportationOfficials(AASHTO)
•NationalDesignSpecification,AmericanInstituteofTimber
Construction(ATTC)
•ManualforRailwayEngineering,AmericanRailway
EngineeringAssociation(AREA)

24
Structural Design
Reinforced Concrete Structures
•1.) 1.4D + 1.7L
•2.) 0.75 [1.4D + 1.7L + 1.7W]
•3.) 0.9D + 1.3W
•4.) 1.4D + 1.7L + 1.7(soil pressure)
•5.) 0.75 [1.4D + 1.7(temperature load) + 1.7L]
•6.) 1.4(D + temperature load)
Steel Structures
•1.) 1.4D
•2.) 1.2D + 1.6L + 0.5(roof live load)
•3.) 1.2D + 0.5L (or 0.8W) + 1.6(roof live load)
•4.) 1.2D + 0.5L + 0.5(roof live load) + 1.3W
•5.) 1.2D + 0.5L + 1.5E
•6.) 0.9D -1.3W (or 1.5E)
Allowable Stress Design (ASD)
•1.) D + L + [roof live load]
•2.) D + L + [W or E]
Where, D = Dead load, L = Live load , W = Wind load , E =
Earthquake load

25
Several Supports

26
Several Supports
Tags