Structural Equation Modelling (SEM) Part 2

6,479 views 18 slides Nov 01, 2013
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

This presentation is an introduction to the concept and theory of Structural Equation Modelling.


Slide Content

Structural Equation Modelling
(SEM)
An Introduction (Part 2)

SEM: Basic Concepts
•MeasuredVariableorIndicatorVariable
•LatentVariable
•MeasurementModel
•StructuralModel

Basic Concepts: Measured Variable/Indicator
•Measuredvariable(s)arethevariablesthatareactuallymeasuredinthe
study.
Latent Variable
Measured Variable 1 Measured Variable 2 Measured Variable 3

Basic Concepts: Latent Variable
•Intangibleconstructsthataremeasuredbyavarietyofindicators
(moreisbetter!)
Latent Variable
Measured Variable 1 Measured Variable 2 Measured Variable 3

Basic Concepts: Measurement Model
•Themeasurementmodelcanbedescribedasfollows.Itshowsthe
relationshipbetweenalatentvariableanditsmeasured
items(variables).
Latent Variable
Measured Variable 1 Measured Variable 2 Measured Variable 3

Basic Concepts: Structural Models
•OftenusedtospecifymodelsinSEM
Causalflowisfromlefttoright;toptobottom
•Straightarrowsrepresentdirecteffects
•Curvedarrowsrepresentbidirectional“correlational”
relationships
•Ellipsesrepresentlatentvariables
•Boxes/rectanglesrepresentobservedvariables

Example:Structural Models

Variants of Structural Equation Modelling
•ConfirmatoryFactorAnalysis(CFA)
•PathAnalysiswithobservedvariables
•Pathanalysiswithlatentvariables

Confirmatory Factor Analysis
“Measurement Model”
•Testsmodelthatspecifiesrelationshipsbetweenvariables(items)and
factors
Andrelationshipsamongfactors
•Confirmatory
Becausemodelisspecifiedapriori

Example: Oblique CFA Model

Confirmatory vs. Exploratory Factor
Analysis
•InCFAthemodelisspecifiedapriori
Basedontheory
•EFAisnotamemberoftheSEMfamily
Includesaclassofproceduresinvolvingcentroids,principalcomponents,and
principalaxisfactoranalysis
Doesnotrequireapriorihypothesisaboutrelationshipswithinyourmodel
Inductivevs.deductiveapproach
Morerestrictionsontherelationshipsbetweenindicatorsandlatentfactors

Example: Oblique EFA Model

Observed Variable Path Analysis (OVPA)
•Testsonlyastructuralmodel
Relationshipsamongconstructsrepresentedbydirectmeasured
(observedvariables)
i.e.,each“box”inmodelisanidem,subscale,orscale
•Analogoustoaseriesofmultipleregressions
But,withMR,wewouldneedkdifferentanalyses,wherekis#of
DVs
WithSEM,cantestentiremodelatonce

Example: OVPA

Latent Variable Path Analysis (LVPA)
•Simultaneous test of measurement and structural parameters
•CFA and OVPA at same time
•LVPA models incorporate….
•Relationships between observed and latent variables (i.e., measures and factors)
•Relationships between latent variables
•Error & disturbances/residuals

Example: LVPA

Data Considerations
SampleSize
•SEMisalarge-sampletechnique
•TherequiredSamplesizeneededdependson….
Complexityofmodel
Ratiosofsamplesizetoestimatedparametersrangingfrom
5:1to20:1(Bentler&Chou,1987;Kline,2005)
DataQuality
Largersamplesfornon-normaldata

Looking for Online SEM
Training?
Contact us: [email protected]
Visit: http://tinyurl.com/costarch-sem
www.costarch.com