Summary of research on LWC_composite column (LI_Taokui-202401).pptx

litaokui123 8 views 31 slides Jun 30, 2024
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

This PPT is about lightweight concrete materail test.


Slide Content

Li Taokui Dr. P.F. Men Dr. H.C. Ho Prof. K. F. Chung Constitutive modelling of light weight concrete filled steel tube(LWCFST) Jan. 2024

1. Project information Title : Development of innovative high-strength lightweight concrete and composite column for low-carbon high-rise building construction Duration : 36 Months, 01-01-2024 to 31-12-2026 High-strength lightweight concrete ( MiC floor slab) Lightweight composite column (High-rise buildings) Part Ⅰ(Materials) : Prof. C.S. Poon & Dr. J.X. Lu Part Ⅱ(Structural engineering) : Prof. K.F. Chung & Dr. H.C. Ho

2. Background H igh-strength lightweight composite column ( HSLCC ) A new combination form of high-strength steel ( HSS ) tube and high-strength lightweight concrete ( HSLC ) Improved ductility (overcome the brittleness of HSLC) ; Delayed local buckling with the use of HSLC ; Improved fire resistance of pure steel structure; High bearing capacity and lightweight . Advantages HSLCC HSS HSLC

3. Methodology

4. Main objectives To investigate the structural behavior of lightweight composite columns in the entire loading process. To investigate the confinement effect of steel tube on the infilled lightweight concrete with different swelling agent(from 0% to 12%, add 3% each time) . To investigate the constitutive model of lightweight composite columns. To investigate the bonding behavior of steel tube and the infilled concrete.

5. Methodology Stage 1: Bonding behavior of CFST with different swelling agent. Specimen ID Concrete type Size of steel tube (mm) Specimen number Curing day (d) CFST-LAC-0% LAC-0% 3*152*300 1 0-28 CFST- LAC-3% LAC-3% 3*152*300 1 0-28 CFST-LAC-6% LAC-6% 3*152*300 1 0-28 CFST- LAC-9% LAC-9% 3*152*300 1 0-28 CFST- LAC-12% LAC-12% 3*152*300 1 0-28 CFST-NC-0% NC-0% 3*152*300 1 0-28 Testing scheme for the expansive stress of LAC filled steel tube columns (11/6 – 12/4)

5. Methodology Stage 1: Bonding behavior of CFST with different swelling agent. LAC-0% LAC-3% LCA-6% LAC-9% LAC-12% NC-0%

5. Data collection(from 8-Nov. to 5-Dec., 28 days) Vertical strain of CFST Horizontal strain of CFST

5. Methodology Stage 1: Material tests on steel, concrete cubes/cylinders Stage 2: Compression tests on composite columns. Stage 3: Constitutive modelling of confined concrete and composite columns LWC60 / NC60 S235

6. Test program Material tests Tensile test of steel (MS) Compression test of concrete cylinder (MC-R) S235 LWC60 / NC60 L = 300 mm D =150mm MR-C : Cube test: f cu Cylinder test: f c , E c ,& μ Longitudinal split test: f t Compression tests LWC60 / NC60 S235 D =152 mm L = 300 mm Dimensions: L/D = 300/152 = 1.97 D/t =152/3 = 50.7 Swelling agent ratio: LAC-0%, LAC-3%, LAC-6%, LAC-9%, LAC-12%, NC-0% D =146 mm

6. Test program No. Spicemen Steel grade Concrete grade Swelling agent L (mm) D (mm) t (mm) N u,test (kN) 1 LAC-0-a   S235 LAC-60 0% 300 152 3 1511   2 LAC-0-b   S235 LAC-60 0% 300 152 3 1105   3 LAC-3-a   S235 LAC-60 3% 300 152 3 1670 4 LAC-3-b   S235 LAC-60 3% 300 152 3 1342 5 LAC-6-a   S235 LAC-60 6% 300 152 3 1677   6 LAC-6-b   S235 LAC-60 6% 300 152 3 1414   7 LAC-9-a S235 LAC-60 9% 300 152 3 1776 8 LAC-9-b   S235 LAC-60 9% 300 152 3 1656 9 LAC-12-a S235 LAC-60 12% 300 152 3 1730 10 LAC-12-b   S235 LAC-60 12% 300 152 3 1676 11 NC-0-a   S235 NC-60 0% 300 152 3 1880 12 NC-0-b   S235 NC-60 0% 300 152 3 1729

6. Test results — Preparation LAC-0%-a LAC-3%-a LAC-6%-a LAC-9%-a LAC-12%-a NC-0%-a LAC-0%-b LAC-3%-b LAC-6%-b LAC-9%-b LAC-12%-b NC-0%-b

6. Test results — Failure mode LAC-0%-a LAC-3%-a LAC-6%-a LAC-9%-a LAC-12%-a NC-0%-a LAC-0%-b LAC-3%-b LAC-6%-b LAC-9%-b LAC-12%-b NC-0%-b

6. Test results — Failure mode LAC-12%-a Steel Concrete NC-0%-a Steel Concrete

6. Test results — Load-Strain curve

6. Test results — Load-Strain curve

7. Review of constitutive modelling (Mohr-Column method)

Matsuoka- Nakai Mohr-Coulomb Drucker-Prager Tresca Von-Mises Soil Steel Interesting link!

Stress transformation Y X Z x ij where i -- direction j -- face Cauchy stress tensor

Direction cosine Area projection Y X Z   F F   F       F   Y X Z A x =  

Direction cosine Area projection Y X Z   F F   F       F   Y X Z A y =  

Direction cosine Area projection Y X Z   F F   F       F   Y X Z A z =  

Apply force equilibrium Y X Z Let cos θ x = λ x cos θ y = λ y cos θ z = λ z Write in matrix form: Apply force equilibrium, we can get:

Principle stresses The direction cosine may be factored: The determine of this is zero:

Stress invariants, isotropic and deviatoric stress components, stress path Det( - ) = 0    

Stress invariants, isotropic and deviatoric stress components, stress path Invariants (Don’t change with coordinate system):   = +   Cauchy stress = Isotropic stress + Deviatoric stress tensor(S d ) where = + S d   Deviatoric stress tensor :  

Summary of σ 1 - σ 3 relationship Researcher Research founding Considere σ 1 =α c f' c +4.8σ 3 α c ∈[1.0,1.5] Richart σ 1 = f' c +4.1 σ 3 Balmer σ 1 1.37 =196(σ 3 +430) Chinn and Zimmerman σ 1 = f' c + λ 1 σ 3 λ2 Gardner σ 1 = f' c +4.9 σ 3 Hobbs σ 1 = f' c + βσ 3 β=4.6 + 0.1 Xu Jishan( 徐积善 ) σ 1 = f' c +k σ 3 k=2e -0.125 σ 3 0.5 Avram σ 1 /f' c =1+3.7(σ 3 /f' c ) 0.86 Cai Shaohuai( 蔡绍怀 ) σ 1 /f' c =1+6.0(σ 3 /f' c ) Ansari σ 1 /f' c =1+5.5(σ 3 /f' c ) Candappa σ 1 /f' c =1+5.0(σ 3 /f' c )

Mohr-Coulomb  

Mohr-Coulomb Failure Criteria = (tan σ m + where σ m = - Mean stress tan ϕ ----------- Friction coefficient 𝜏 ------------- Cohesion strength  

Mohr-Coulomb Failure Criteria UCS σ 3 σ 1 σ 1 σ 3 σ 3 σ 1 σ 1 = σ 3 + UCS where σ 1 ---- vertical stress σ 3 ---- lateral stress ---- UCS - Unconfined compression strength   σ 1 σ 3 σ 3 σ 3

Thanks for your attention !
Tags