ComputerGraphics
6.Coons Patch
•Coons patch or surface is generated by the
interpolation of 4 edge curves as shown.
ComputerGraphics
Bi-cubicpatches (Surfaces)
•The concept of parametriccurves can be
extended to surfaces
•The cubic parametric curve is in the form of
Q(t)=t
T
Mqwhere q=(q1,q2,q3,q4) : qi control
points, Mis the basis matrix (Hermite or
Bezier,…), t
T
=(t
3
, t
2
, t, 1)
ComputerGraphics
•Now we assume qito vary along a parameter s,
•Qi(s,t)=t
T
M[q1(s),q2(s),q3(s),q4(s)]
•qi(s)are themselves cubic curves, we can write
them in the form …
ComputerGraphics
BicubicpatchessMMt
MsMsMttsQ
TT
TTT
....
])[..],...,[...(.),(
444411111
q
q,q,q,qq,q,q,q
4324321
where q is a 4x4 matrix
Each column contains the control points of
q1(s),…,q4(s)
x,y,z computed by
44342414
43332313
42322212
41312111
qqqq
qqqq
qqqq
qqqq sMMttsz
sMMttsy
sMMttsx
T
z
T
T
y
T
T
x
T
....),(
....),(
....),(
q
q
q
ComputerGraphics
14/10/2008 Lecture 6 11
Bézier example
•We compute (x,y,z) by coordszofarrayisq
sMqMttsz
coordsyofarrayisq
sMqMttsy
coordsxofarrayisq
sMqMttsx
z
T
BzB
T
y
T
ByB
T
x
T
BxB
T
44
....),(
44
....),(
44
....),(
ComputerGraphics
14/10/2008 Lecture 6 12
Continuity of Bicubic patches.
•Hermite and Bézier patches
–C
0 continuity by sharing 4
control points between
patches.
–C
1 continuity when both sets
of control points either side of
the edge are collinear with the
edge.