Taylor_and_Maclaurin_Series_Calculus.ppt

JayLagman3 46 views 38 slides May 09, 2024
Slide 1
Slide 1 of 38
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38

About This Presentation

Calculus


Slide Content

TAYLOR AND MACLAURIN
how to represent certain types of functions as sums of power series
You might wonder why we would ever want to express a known function
as a sum of infinitely many terms.
Integration. (Easy to integrate polynomials)
Finding limit
Finding a sum of a series (not only geometric, telescoping)
dxe
x
2 2
0
1
lim
x
xe
x
x


TAYLOR AND MACLAURIN
Example:x
exf)( 



0n
n
n
x
xce 
5
5
4
4
3
3
2
210 xcxcxcxcxcc
Maclaurin series ( center is 0 )
Example:xxf cos)( Find Maclaurin series

TAYLOR AND MACLAURIN
Important Maclaurin Series and Their Radii of Convergence
MEMORIZE: these Maclaurin Series

TAYLOR AND MACLAURIN
Maclaurin series ( center is 0 )
Example:xxf
1
tan)(


Find Maclaurin series

TAYLOR AND MACLAURIN
TERM-081

TAYLOR AND MACLAURIN
TERM-091

TAYLOR AND MACLAURIN
TERM-101

: TAYLOR AND MACLAURIN
TERM-082)2cos(cos
2
1
2
12
xx

Sec 11.9 & 11.10: TAYLOR AND MACLAURIN
TERM-102

Sec 11.9 & 11.10: TAYLOR AND MACLAURIN
TERM-091

TAYLOR AND MACLAURIN
Maclaurin series ( center is 0 )
Example:

0!
1
nn
Find the sum of the series

TAYLOR AND MACLAURIN
TERM-102

TAYLOR AND MACLAURIN
TERM-082

TAYLOR AND MACLAURIN
Leibniz’s formula:
Example: Find the sum 






0
12
1
12
)1()(tan
n
n
n
n
x
x 

753
)(tan
753
1 xxx
xx 



0 12
)1(
n
n
n 
7
1
5
1
3
1
1

TAYLOR AND MACLAURIN
Important Maclaurin Series and Their Radii of Convergence
MEMORIZE: these Maclaurin Series

The Binomial Series
Example:








3
3/1 !3
)2
3
1
)(1
3
1
(
3
1
 81
5

DEF:6
)
3
5
)(
3
2
(
3
1


Example:








5
2/1 !5
)4
2
1
)(3
2
1
)(2
2
1
)(1
2
1
(
2
1


The Binomial Series
binomial series.
NOTE:1
0








k k
kk









!11 !2
)1(
!22









 kkkk

The Binomial Series
TERM-101
binomial series.

The Binomial Series
TERM-092
binomial series.

TAYLOR AND MACLAURIN
Important Maclaurin Series and Their Radii of Convergence
Example:)1ln()( xxf  Find Maclaurin series

TAYLOR AND MACLAURIN
TERM-102

TAYLOR AND MACLAURIN
TERM-111

TAYLOR AND MACLAURIN
TERM-101

TAYLOR AND MACLAURIN
TERM-082

TAYLOR AND MACLAURIN
Important Maclaurin Series and Their Radii of Convergence
MEMORIZE: these Maclaurin Series

TAYLOR AND MACLAURIN
Maclaurin series ( center is 0)
Taylor series ( center is a)

TAYLOR AND MACLAURIN
TERM-091

TAYLOR AND MACLAURIN
TERM-092

TAYLOR AND MACLAURIN
TERM-082

TAYLOR AND MACLAURIN
Taylor series ( center is a)
Taylor polynomial of order n
DEF:

TAYLOR AND MACLAURIN
TERM-102
The Taylor polynomial of order 3 generated by the function f(x)=ln(3+x) at a=1 is:
Taylor polynomial of order n
DEF:

TAYLOR AND MACLAURIN
TERM-101

TAYLOR AND MACLAURIN
TERM-081

TAYLOR AND MACLAURIN
Taylor series ( center is a)



0
)(
)(
!
)(
)(
k
k
k
ax
k
af
xf
Taylor polynomial of order n


n
k
k
k
n ax
k
af
xP
0
)(
)(
!
)(
)(
Remainder 



1
)(
)(
!
)(
)(
nk
k
k
n ax
k
af
xR
Taylor Series )()()( xRxPxf
nn
Remainder consist of infinite terms k
n
n ax
n
cf
xR )(
)!1(
)(
)(
)1(




for some c between a and x.
Taylor’s Formula
REMARK:)(not )(
)1()1(
afcf
nn  Observe that :

TAYLOR AND MACLAURIN k
n
n ax
n
cf
xR )(
)!1(
)(
)(
)1(




for some c between a and x.
Taylor’s Formulak
n
n x
n
cf
xR
)!1(
)(
)(
)1(



for some c between 0 and x.
Taylor’s Formula

TAYLOR AND MACLAURIN
Taylor series ( center is a)
nth-degree Taylor polynomial of f at a.
DEF:
Remainder
DEF:)()()( xTxfxR
nn 
Example:





01
1
)(
n
n
x
x
xf 32
3
0
3
1)( xxxxxT
n
n

 


654
4
3
)( xxxxxR
n
n

TAYLOR AND MACLAURIN
TERM-092

TAYLOR AND MACLAURIN
TERM-081
Tags