The adrenal gland, catecholamine synthesis

AtifHKhirelsied 14,179 views 25 slides Jan 12, 2013
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

No description available for this slideshow.


Slide Content

The Adrenal Gland The Adrenal Gland
Atif Hassan Khirelsied
, Ph.D ,
Department of Biochemistry
Faculty of Medicine
International University of Africa

The Adrenal Glands
•The two adrenal 
g
lands are 
g
located on the anterior 
surface above the kidne
y
s.
y
•Each gland weighs about 6 
thlftdli
grams, 
th

le
ft
 a
d
rena
l is 
longer and thinner. 

The Adrenal Glands

The Adrenal Glands

The Adrenal Glands
ƒ
Theadrenalglandiscompoundglandcomprises
ƒ
The
 adrenal
 gland
 is
 compound
 gland

comprises
 
two different endocrine tissues. 
ƒCross sectioning through the adrenal gland reveals 
a pale medulla in the centre  surrounded by a 
darker cortex.
ƒ
Each
ofthesetworegionsproducesadistinctly
Each
 of
 these
 two
 regions
 produces
 a
 distinctly
 
different group of hormones.

The cortex
•It is the outer part of the gland. •It consists of three concentric 
zones
ofcellsrichincholesterol
zones
 of
 cells

rich
 in
 cholesterol

•Each zone has a characteristic arrangement of cellsand 
containsdifferent set of enzymes, thus differ in their 
major hormonal products.

The adrenal cortex

Zona
glomerulosa

Zona
glomerulosa

predominantly secretes 
mineralocorticoids mineralocorticoids (aldosterone). 
•Zonafasiculata,
the main 
sourceof
glucocorticoids
source
 of
 glucocorticoids
(cortisol) and androgens.
•Zonareticularis,
produces 
androgens androgens

The Adrenal Gland

Theadrenalmedulla(AM)isactuallyanextensionof The
 adrenal
 medulla
 (AM)
 is
 actually
 an
 extension
 of
 
the sympathetic NS “special ganglion”.
1. The splenic nerveterminates in the AM, innervates 
th
h ffill
th
e c
h
roma
ffi
n ce
ll
s.
2. Chromaffin cells produce the catecholamines.

The hormones of the adrenal medulla
•Chromaffin cells produce the catecholamines.
1. Epinephrine
2. Norepinepherine
3. Dopamine. Thilf
lif

Th
ey are not essent
ia
l f
or 
lif
e.
Aidf
di
(

A
re requ
ire
d
 f
or a
d
aptat
ion to stress 
(
acute , 
chronic).
•Major element for severe stress.

The biosynthesis of catecholamines

The biosynthesis of catecholamines
Tyrosine hydroxylase
1. Produces L‐3
,4‐dih
y
drox
yp
hen
y
lalanine 
(
L‐DOPA
)

,
yypy(
)
2. Is the rate limittingenzyme. 3
Iron

containingprotein[ferricstate(Fe
2
)]
3
.
Iron

containing
 protein[ferric
 state(Fe
)]
.
4. Exists in soluble and particle forms.
5
Ull
5
.
U
ses mo
lecu
lar oxygen.
6. Requires tetrahydrobiopterin(BH
4
).

The biosynthesis of catecholamines
•Tyrosine hydroxylaseinhibitors.
1
Feedback
inhibitedbyitsproducts
1
.
Feedback
 inhibited
 by
 its
 products
.
2
Canbecompetiti elinhibitedbt rosinederi ati es
2
.
Can
 be
 competiti
v
el

inhibited
 b

t
y
rosine
 deri
v
ati
v
es
 
( e.g., α‐methyltyrosine), used for treatment of 
pheochromocytoma pheochromocytoma
.
3
Clbi hibit dbi
hltit(
3
.
C
an a
lso 
b

in
hibit
e
d
 b

iron‐c
h
e
la
ti
ng agen
t

(
e.g., 
αα
‐‐bipyridine).
22
‐‐bipyridyl

The biosynthesis of catecholamines
•Aromatic L‐amino acid (Dopa) 
decarboxylase
ƒSynonyms

–tryptophan decarboxylase, 
–5‐hydroxytryptophan decarboxylase. 
ƒIt catalyzes several different 
decarboxylation reactions:
•L‐DOPA to dopamine
•5‐HTP to serotonin
•tryptophan to tryptamine

The biosynthesis of catecholamines
•Aromatic L‐amino acid (Dopa) decarboxylase
1. Soluble form. 2
Req ires
pyridoxalphosphate
2
.
Req
u
ires
 pyridoxal
 phosphate
.
3. Is competitively inhibited by α‐methyl dopa.
4. Can also be inhibited by halogenated compounds.
5. Anti‐hypertension drugs (methyl dopa, 3‐
hydroxtyramine, α‐methyl tyrosine, metaramino
l) 
inhibits this enzyme .

The biosynthesis of catecholamines
•Dopamine‐β‐hydroxylase(DBH)
1. Converts do
p
amine to nore
p
ine
p
hrine
p
pp
2. Requires ascorbic acid as e

donor.
3.
Has
Cu
inactivesite.
3.
Has
 Cu
 in
 active
 site.
 
4. Use fumarateas modulator

The biosynthesis of catecholamines

Phenylethanolamine

N

methyl
transferase
(PNMT)

Phenylethanolamine

N

methyl
 transferase
(PNMT)
1. Soluble in cytoplasm. 2
Id db
ltiid
2
.
I
n
d
uce
d
 b
y g
lucocor
ti
co
id
s.
3. Uses SAM, methyl donor.

The regulation of catecholamines synthesis
1
Stimulatedby
splanchnic
nerve
1
.
Stimulated
 by
 splanchnic
nerve
.
2. Increases after acute stress by activation of enzymes.
3
En mesareind cedbchronicstress(
corticoids
)
3
.
En
zy
mes
 are
 ind
u
ced
 b

chronic
 stress
 (
corticoids
)
.

The storage, release and uptake of catecholamines •Storage .
1. Stored in the chromaffin granules 2. Associated with ATP‐Mg
2+
and Ca
2+
•Release .
1. By exocytosis(Ca
2+
‐dependent)
2. Stimulated by cholinergicand β‐adrenergic
3. Inhibited by α‐adrenergic •Uptake.
Neuronal uptake of the hormone is necessary for:
1. Conservation of the hormone
2. Termination of signal

The catecholamines receptors
•α1 .
1. Acts via calcium. 2. Increases glycogenolysis.
3. Smooth muscle contraction (blood vessels, urinogenital
tract
)
tract
)
.

α
2
.
α
2
.
1. Inhibits cAMPformation.
2. Smooth muscle relaxation (GIT)
3. Smooth muscle contraction (some vascular beds)
4. Inhibits:
1
li l i
1
.
li
po
lys
is
2. Reninerelease
3. Platelets aggregation
4. Insulin secretion

The catecholamines receptors
•β1 .
1. Stimulates cAMPformation 2. Stimulates lipolysis
3. Increases mycocardialcontraction (rate and force) •β2.
1. Stimulates cAMPformation
2. Increases smooth muscle contraction (bronchi, blood 
vesselsGITandGUT) vessels

GIT
 and
 GUT)
3. Increases:
1. He
p
atic 
g
luconeo
g
enesis
p
gg
2. Hepatic glycogenolysis
3. Muscle  glycogenolysis
4. Release of insulin, glucagon and renin

Types of adrenergic receptors
Receptor
Effectively
EffectofLigand
Physiologic
Receptor
Effectively

Binds
Effect
of
Ligand
Binding
Physiologic

Effects
α
Norepinephrine
Increasedfree
↑v
asoconstriction
α
1
Norepinephrine
,
Epinephrine.
Increased
free

calcium

v
asoconstriction
.
↑ smooth muscle
contraction.

ki d i l

s
ki
n an
d
v
i
scera
l

arterioles constriction.
↑ sphincters and pilomotor
α
2
Norepinephrine,
Epinephrine.
Decreased cyclic
AMP
constriction. ↓ insulin secretion

Types of adrenergic receptors
Receptor Effectively Effect of Ligand Physiologic
Binds Binding Effects
β
Ei hi
Idli

htt
β
1
E
p
i
nep
h
r
i
ne,
Norepinephrine
I
ncrease
d
cyc
li
c
AMP

h
ear
t
ra
t
e
↑ heart strength
↑ lipolysis.
Β
2
Epinephrine Increased cyclic
AMP
↑ vasodilatation.
↑ bronchodilatation.

lli

g
l
ycogeno
l
ys
i
s.
↑ glycolysis
↑ calorigenesis.
↑ relaxation of intestine, uterus
and bladder wall.

The catecholamines mechanism of signaling

Bindingto
β
1
and
β
2

Binding
 to
 β
1
 and
 β
2
 .
1. Stimulates G‐proteins coupled to adenylatecyclase.
•Binding to α2.
1. Inhibits adenylatecyclase.
•Binding to α1.
1
Iscoupledto
phospholipase
Cincreases
1
.
Is
 coupled
 to
 phospholipase
C

increases
 
phosphoinsitol, DAG and Ca
2+
.

The catabolism of catecholamines
1. Have very short t½ (10‐30 sec) 2. Less than 5% is excreted in urine 3. Catabolizedby:
hl
hl
f
()
1. Catec
h
o
l‐o‐met
h
y
l trans
f
erase
(
COMT
)
 
2. Monoamine oxidase

Catecholamine degradation
COMT = Catechol‐o‐methyl transferase, MAO = Monoamine oxidase,  DOPAC
=
3
4
Dihydroxyphenylaceticacid
MHPG
=
3
Methoxy
4
hydroxyphenylglycol
DOPAC
 =
 3
,
4

Dihydroxyphenylacetic
 acid
,  
MHPG
 =
 3

Methoxy

4

hydroxyphenylglycol
 , 
DHPG= 3,4 dihydroxyphenylglycol, 
VMA= Vanillylmandelic acid,   HVA= homovanillicacid (HVA,
Tags