The commonly used measures of absolute dispersion are: 1. Range 2. Quartile Deviation 3. Mean (Average) Deviation 4. Variance and Standard Deviation

558 views 28 slides May 26, 2020
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

The commonly used measures of absolute dispersion are:
1. Range
2. Quartile Deviation
3. Mean (Average) Deviation
4. Variance and Standard Deviation


Slide Content

2

Thescatterofthevaluesabouttheircentreiscalled
dispersionandanymeasureindicatingtheamountof
scatteraboutthecentreiscalledaMeasureof
Dispersion.
Theindividualobservationsofavariabletendtoscatter
abouttheircentre.Thehighestdegreeof
concentrationisthatalltheobservationsareofsame
size.Thescatterinthiscasewouldbezeroandmean
willbeexactlysameastheindividualvaluesofthe
variable.
3

There are two main types of measures of
dispersion:
1. Absolute Measure of Dispersion
2. Relative Measure of Dispersion
Absolute Measure of Dispersion
Theabsolutemeasureofdispersion
measuresthevariationpresentamongthe
observationsintheunitofthevariableor
squareoftheunitofthevariable.
4

Relative Measure of Dispersion
Therelativemeasureofdispersion
measuresthevariationpresentamongthe
observationsrelativetotheiraverage.It
isexpressedintheformofaratio,
coefficientorpercentage.Itis
independentoftheunitofmeasurement.
5

The commonly used measures of absolute
dispersion are:
1. Range
2. Quartile Deviation
3. Mean (Average) Deviation
4. Variance and Standard Deviation
6

Their corresponding measures of relative
dispersion are:
1. Coefficient of Range
2. Coefficient of Quartile Deviation
3. Coefficient of Mean (Average)
Deviation
4. Coefficient of Variation (CV)
7

IfX1,X2,…,Xnarenobservationsofa
variableX,withX1andXnasthesmallest
andlargestobservationsrespectively.
Thenitsrangeisdefinedas:
Range=Xn-X1
8

Example:Thefollowingdatasetshowsthe
weeklyTVviewingtimes,inhours.
Calculaterangeandrangecoefficientof
variation.
25,41,27,32,43,66,35,31,15,5,
34,26,32,38,16,30,38,30,20,21. 
 
 
859.0
566
5-66
Range ofefficient -Co
5.35
2
Range Mid
5.30
2
566
22
Range
Range Semi
61hours566XXRange
1
1
1n












XX
hours
XX
n
n
9

If X1, X2, …, Xn are n observations of a
variable X, with Q1and Q3as their first
and third quartiles respectively, then
their Quartile Deviation (QD) is as:2
QQ
MIQR
2
QQ
2
IQR
QD SIQR
QQ IQR
13
13
13





10

Example:
CalculateQDandcoefficientofQDof
abovedatasetshowstheweeklyTV
viewingtimes,inhours.0.248
QQ
QQ
MIQR
SIQR
Q.D ofEfficient -Co
h 29.25
2
QQ
MIQR
h 7.25
2
QQ
2
IQR
QD SIQR
h 14.5 22.0-36.5 IQRh 36.5 Qh 0.22
13
13
13
13
31










Q
11

If X1, X2, …, Xnare n observations of a
variable X, with m as their average
(mean, median or mode), then their
mean deviation, denoted by MD, is
defined as:n


mX
MD
12

X X-Mean|X-Mean|X X-Mean|X-Mean|
25 -5.25 5.25 34 3.75 3.75
4110.75 10.7526 -4.25 4.25
27 -3.25 3.25 32 1.75 1.75
32 1.75 1.75 38 7.75 7.75
4312.75 12.7516-14.25 14.25
6635.75 35.7530 -0.25 0.25
35 4.75 4.75 38 7.75 7.75
31 0.75 0.75 30 -0.25 0.25
1515.25 15.2520-10.25 10.25
5 -25.25 25.2521 -9.25 9.25
Continue 605 0 175.00
13

Example:
Calculate MD and coefficient of MD.h 30.25
20
605
n
X
X 
 289.0
25.30
75.8
UsedAverage
M.D.
MD oft Coefficien
h 8.75
20
175mX
MD





n
14

15
TheVarianceisdefinedasthemeanofthe
squareddeviationsfrommean.The
populationvarianceisdenotedbyσ2where
assamplevarianceisdenotedbyS2and
definedas
Forungroupeddata sampleFor
n
)x - (x
= S
population For
N
) - (x
=
2
2
2
2



16
Forgroupeddata sampleFor
n
)x-(x f
= S
population For
N
)-(x f
=
2
2
2
2



17
Standard deviation:
Thepositivesquarerootofthevarianceiscalled
StandardDeviation.Itisdenotedbyσ(Sforsample)



















22
n
x
n
x
S 18
Itisverymuchmorestraight-forward
tousetheshortcutformulagiven
below:

X X
2
4 16
6 36
2 4
0 0
3 9
5 25
8 64
Total28 154 19 
fatalities45.26
1622
7
28
7
154
S
2



















Therefore

Theformulaethatwehavejustdiscussedare
validincaseofrawdata.
Incaseofgroupeddatai.e.afrequency
distribution,eachsquareddeviationroundthemean
mustbemultipliedbytheappropriatefrequency
figurei.e.
n
xxf
S
2


Andtheshortcutformulaincaseofa
frequencydistributionis:

















22
n
fx
n
fx
S

whichisagainpreferredfromthecomputational
standpoint.
Forexample,thestandarddeviationlifeofa
batchofelectriclightbulbswouldbecalculatedas
follows:Life (in
Hundreds
of Hours)
No. of
Bulbs
f
Mid-
point
x
fx fx
2
0 – 5 4 2.5 10.0 25.0
5 – 10 9 7.5 67.5506.25
10 – 20 38 15.0570.08550.0
20 – 40 33 30.0990.029700.0
40 and over16 50.0800.040000.0
100 2437.578781.25
EXAMPLE

Therefore,
standard deviation:
















2
100
5.2437
100
25.78781
S
= 13.9 hundred hours
= 1390 hours 

















22
n
fx
n
fx
S

100100
..

X
s
Mean
DS
CV 23
Co-efficient of Variation.
The standard deviation is an absolute measure
of dispersion its relative measure of dispersion
is called co-efficient of variation (CV) and is
defined by :

Measures relative variation
Always in percentage (%)
Shows variation relative to mean
Is used to compare two or more sets of data
measured in different units 100%
x
s
CV 









Population Sample100%
μ
σ
CV 








25
Example:FindVariance,S.DandCo-efficientofVariation.
X 23681130
(X-6)
2
169042554% 54.76 = 100
6
3.286
= 100
x
S
= C.V
3.286 = 10. =
n
)x - (x
= S
10.8 =
5
54
=
n
)x - (x
= S
2
2
2



8

Stock A:
Average price last year = $50
Standard deviation = $5
Stock B:
Average price last year = $100
Standard deviation = $5
Both stocks have
the same standard
deviation, but
stock B is less
variate relative to
its price10%100%
$50
$5
100%
x
s
CV
A









 5%100%
$100
$5
100%
x
s
CV
B









27
Example:-FindVariance,S.DandCo-efficientofVariation.
Class f X ( X-X )( X-X )
2
f ( X-X )
2
20---24 1 22 -17 289 289
25---29 4 27 -12 144 576
30---34 8 32 -7 49 392
35---39 11 37 -2 4 44
40---44 15 42 3 9 135
45---49 9 47 8 64 576
50---54 2 52 13 169 338
TOTAL 50 2350

28
Example:-17.56% = 100 x
39
6.85
= C.V
6.85 = 47 =
n
)x -(x f
= S
47
50
2350
n
)x -(x f
S
39X
2
2
2




Tags