theories_of_failure.ppt

ssuser72b8e8 72 views 77 slides Jan 06, 2024
Slide 1
Slide 1 of 77
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77

About This Presentation

design engineering


Slide Content

Theories of Failure
Failureofamemberisdefinedasoneoftwoconditions.
1.Fractureofthematerialofwhichthememberismade.Thistype
offailureisthecharacteristicofbrittlematerials.
2. Initiationofinelastic(Plastic)behaviorinthematerial.Thistype
offailureistheonegenerallyexhibitedbyductilematerials.
When an engineer is faced with the problem of design using a specific
material, it becomes important to place an upper limit on the state of
stress that defines the material's failure. If the material is ductile, failure
is usually specified by the initiation of yielding, whereas if the material is
brittle it isspecified by fracture.
1

Thesemodesoffailurearereadilydefinedifthememberissubjectedto
auniaxialstateofstress,asinthecaseofsimpletensionhowever,ifthe
memberissubjectedtobiaxialortriaxialstress,thecriteriaforfailure
becomesmoredifficulttoestablish.
Inthis section we will discuss four theories that are often used in
engineering practice to predict the failure of a material subjected to a
multiaxial state of stress.
A failure theory is a criterion that is used in an effort to predict the failure
of a given material when subjected to a complex stress condition.
2

i.Maximumshearstress(Tresca)theoryforductilematerials.
ii.Maximumprincipalstress(Rankine)theory.
iii.Maximumnormalstrain(SaintVenan’s)theory.
iv.Maximumshearstrain(DistortionEnergy)theory.
Several theories are available however, only four important theories are
discussed here.
3

MaximumshearstresstheoryforDuctileMaterials
TheFrenchengineerTrescaproposedthistheory.Itstatesthata
membersubjectedtoanystateofstressfails(yields)whenthe
maximumshearingstress(τ
max)inthememberbecomesequaltothe
yieldpointstress(τ
y)inasimpletensionorcompressiontest(Uniaxial
test).Sincethemaximumshearstressinamaterialunderuniaxialstress
conditionisonehalfthevalueofnormalstressandthemaximum
normalstress(maximumprincipalstress)is
max,thenfromMohr’s
circle.2
max
max


4

5

If both of principal stresses are of the same sign tension
compression then
σ
1<σ
y (4)
σ
2<σ
y (5)
IncaseofBiaxialstressstate)3(
22
)2(
22
21
21
max
21minmax
max









y
y
y





6

Agraphoftheseequationisgiveninthefigure.Anygivenstateof
stresswillberepresentedinthisfigurebyapointofco-ordinate
1and

2where
1and
2aretwoprincipalstresses.Ifthesepointfallswithin
theareashown,thememberissafeandifoutsidethenmemberfailsasa
resultofyieldingofmaterial.TheHexagonassociatedwiththe
initiationofyieldinthememberisknownas“TrescaHexagon”.(1814-
1885).Inthefirstandthirdquadrant
1and
2havethesamesignsand
7


maxishalfofthenumericallylargervalueofprincipalstress
1or
2.
Inthesecondandfourthquad,where
1and
2areofoppositesign,

maxishalfofarithmeticalsumofthetwo
1and
2.
Infourthquadrant,theequationoftheboundaryorlimit
(yield/boundarystress)stresslineis

1-
2= 
y
Andinthesecondquadranttherelationis

1-
2= -
y
8

y
 
21 y

1 y

1 y

2 y
 
21 y

2 9

Problem01:-
ThesolidcircularshaftinFig.(a)issubjecttobeltpullsateach
endandissimplysupportedatthetwobearings.Thematerialhasa
yieldpointof36,000Ib/in
2
•Determinetherequireddiameterofthe
shaftusingthemaximumshearstresstheorytogetherwithasafety
factorof3.
10

400 + 200 lb
200 + 500 lb
11

12

0
42800
64
2
4200
.42006700
.36006600
64
2
3
4
4









y
x
x
B
x
d
d
d
inlbMc
inlbM
d
I
d
c
I
Mc





 13

inlb
OR
inlb
T
d
d
d
J
Tr
xy
xy
.480024200
24)200400(
.480016300
16)200500(
480,24
32
2
4800
3
4










 xy
 yx
 yx
 xy
 3
480,24
d
xy 3
800,42
d
x x 14


2
2
21
max21
2
2
2
know weAs
xy
yx














 3
36000
2
)(
2
...
...
And
21
21
max




FOS
SOF
SOF
yield
yield
y





 15

''76.1
480,24
2
42800
1036
480,24
2
42800
2
000,12
480,24
2
42800
2
3
000,36
480,24
2
42800
2
2
3
2
3
6
2
3
2
3
2
3
2
3
2
3
2
321





















































d
dd
dd
dd
dd
 16

Problem 02
Thestateofplanestressshownoccursatacriticalpointofasteel
machinecomponent.Asaresultofseveraltensiletests,ithasbeenfound
thatthetensileyieldstrengthis
y=250MPaforthegradeofsteelused.
Determinethefactorofsafetywithrespecttoyield,using(a)the
maximum-shearing-stresscriterion,and(b)themaximum-distortion-
energycriterion.
17

18

SOLUTION
Mohr's Circle. We construct Mohr's circle for the given state of stress
and find MPaOC
yxave
20)4080()(
2
1
2
1
  MPaFXCFR
m 65)25()60()()(
2222

Principal StressesMPaCAOC
a 856520  MPaCAOC
b 456520 
a.Maximum-Shearing-StressCriterion.Sinceforthegradeofsteelused
thetensilestrengthisay=250MPa,thecorrespondingshearingstressat
yieldisMPaMPa
YY 125)250(
2
1
2
1

19

MPaFor
m65 2.19.
65
125
.  SF
MPa
MPa
SF
m
Y

 20

b.Maximum-Distortion-EnergyCriterion.Introducingafactorofsafety
intoEq.(7.26),wewrite2
22
.







SF
Y
bbaa


For 
a= +85 MPa, 
b= -45 MPa, and 
y= 250 MPa, we have 
2
22
.
250
45458585 






SF 19.2.
.
250
3.114  SF
SF
21

Comment.Foraductilematerialwith
y=250MPa,wehavedrawnthe
hexagonassociatedwiththemaximum-shearing-stresscriterionandthe
ellipseassociatedwiththemaximum-distortion-energycriterion.The
givenstateofplanestressisrepresentedbypointHofcoordinates
a=
85MPaand
b=-45MPa.Wenotethatthestraightlinedrawnthrough
pointsOandHintersectsthehexagonatpointTandtheellipseatpoint
M.Foreachcriterion,thevalueobtainedforF.S.canbeverifiedby
measuringthelinesegmentsindicatedandcomputingtheirratios:  19.2.2.19. 
OH
OM
SFb
OH
OT
SFa
22

23

ThesolidshaftshowninFig.10-41ahasaradiusof0.5in.andismade
ofsteelhavingayieldstressof
y=36ksi.Determineiftheloadings
causetheshafttofailaccordingtothemaximum-shear-stresstheory
andthemaximum-distortion-energytheory.
Example 10-12
Solution
Thestateofstressintheshaftiscausedbyboththeaxialforceandthe
torque.Sincemaximumshearstresscausedbythetorqueoccursinthe
materialattheoutersurface,wehave
24

ksi
in
ininkip
J
Tc
ksi
in
kip
A
P
xy
x
55.16
2/.)5.0(
.)5.0.(.25.3
10.19
.)5.0(
15
4
2





 Thestresscomponentsareshownactingonanelementofmaterialat
pointAinFig.10-41b.RatherthanusingMohr'scircle,theprincipal
stressescanalsobeobtainedusingthestress-transformationequations,
Eq.9-5.2
2
2,1
2
2
2,1
)55.16(
2
010.19
2
010.19
22





 



















xy
yxyx
25

= -9.55 ±19.11
CTI = 9.56 ksi
CT2 = -28.66 ksi
Maximum-Shear-StressTheory.Sincetheprincipalstresseshave
oppositesigns,thenfromSec.9.5,theabsolutemaximumshearstress
willoccurintheplane,andtherefore,applyingthesecondofEq.10-27,
wehave 
362.38
3666.2856.9
?
21



Y
26

Thus,shearfailureofthematerialwilloccuraccordingtothistheory.
Maximum-Distortion-EnergyTheory.ApplyingEq.10-30,wehave
Using this theory, failure will not occur.    
12961187
)36(66.2866.2856.956.9
)(
2
?
22
2
221
2
1



y
27

Maximum Principal Stress theory or
(Rankine Theory)
Accordingtothistheory,itisassumedthatwhenamemberis
subjectedtoanystateofstress,fails(fractureofbrittlematerialor
yieldingofductilematerial)whentheprincipalstressoflargest
magnitude.(
1)inthememberreachestoalimitingvaluethatisequal
totheultimatenormalstress,thematerialcansustainwhensubjectedto
simpletensionorcompression.
The equations are shown graphically as)1(
1 ult
 )2(
2 ult

28

ult These equations are shown graphically if the point obtained by plotting
the values of 
1+ 
2falls within the square area the member is safe.
29

Itcanbeseenthatstressco-ordinate
1and
2atapointinthematerial
fallsontheboundaryforoutsidetheshadedarea,thematerialissaidto
befracturedfailed.Experimentally,ithasbeenfoundtobeinclose
agreementwiththebehaviorofbrittlematerialthathavestress-strain
diagramsimilarinbothtensionandcompression.Itcabbefurther
noticedthatinfirstandthirdquad,theboundaryisthesaveasfor
maximumshearstresstheory.
Problem
Athin-walledcylindricalpressurevesselissubjecttoaninternal
pressureof600lb/in
2
.themeanradiusofthecylinderis15in.Ifthe
materialhaayieldpointof39,000lb/in
2
andasafetyof3isemployed,
30

determinetherequiredwallthicknessusing(a)themaximumnormal
stresstheory,and(b)theHuber-vonMises-Henckytheory.
P=600psi.
r=15"

y=39000psi
F.O.S=3
t=?
Accordingto
c
Circumferential stress / girth stresswhere
Pr
t
c
 31

By comparing 
1= 
c.
Thus, According to the normal stress theory, maximum Principal stress
should be equal to yield stress/FOS i.e.
|
1| ≤ 
ult |
2| ≤ 
ult
f = maximum (|
1|, |
2|, |
3| -
ult= 0)tt
t
stressallengitudinFor
tt
c
l
c
4500
2
"15600
2
Pr
9000"15600










32

As 
y= 39000psi.69.0
9000
13000
9000
3
39000
Anst
t
t



Problem02:-
ThesolidcircularshaftinFig.18-12(a)issubjecttobeltpullsat
eachendandissimplysupportedatthetwobearings.Thematerialhas
ayieldpointof36,000Ib/in
2
•Determinetherequireddiameterofthe
shaftusingthemaximumnormalstresstheorytogetherwithasafety
factorof3.
33

400 + 200 lb
200 + 500 lb
34

35

0
42800
64
2
4200
.42006700
.36006600
64
2
3
4
4









y
x
x
B
x
d
d
d
inlbMc
inlbM
d
I
d
c
I
Mc





 36

inlb
OR
inlb
T
d
d
d
J
Tr
xy
xy
.480024200
24)200400(
.480016300
16)200500(
480,24
32
2
4800
3
4










 xy
 yx
 yx
 xy
 3
480,24
d
xy 3
800,42
d
x x 37



2
2
2
2
2
1
22
22
xy
yxyx
xy
yxyx





























 2
3
2
331
20.24446
2
42800
2
42800













ddd
 According to maximum normal stress theory .2
3
2
33
1
20.24446
2
42800
2
42800
3
36000














ddd
ult

38

"48.1
51.10
10514.1
10144
1062.5971096.457
2
1092.915
10144
20.24446
2
42800
2
42800
12000
6
6
9
6
6
6
6
6
3
6
6
2
3
2
33























d
d
d
ddd
ddd 39

Mohr’s Criterion:-
Insomematerialsuchascastiron,havemuchgreaterstrength
incompressionthantensionsoMohrproposedthatis1
st
andthird
quadrantofafailurebrokes,amaximumprincipalstresstheorywas
appropriatebasedontheultimatestrengthofmaterialsintensionor
compression.Thereforein2
nd
and4
th
quad,wherethemaximumshear
stresstheoryshouldapply.
Pureshearisoneinwhich
xand
yareequalbutofoppositesense.
40

c
ult Failure or strength envelope
Pure shear
Smaller tension strength
Largest compressive strength
41

tension
compression
42

Problem3:-
Inacast-ironcomponentthemaximumprincipalstressistobelimited
toone-thirdofthetensilestrength.Determinethemaximumvalueof
theminimumprincipalstresses,usingtheMohrtheory.Whatwouldbe
thevaluesoftheprincipalstresses"associatedwithamaximumshear
stressof390MN/m
2
?Thetensileandcompressivestrengthsofthecast
ironare360MN/m
2
and1.41GN/m
2
respectively
43

stress Shearingfourthand2
stress Normalquadrant thirdand1
criterionsMohr'perAs
?
nd
st
2



quadrant
 2
)(
1
/120
3
360
3
thatindicatedAs
mMN
tult



 26
2
/101414
/360
mMN
mMN
cult
tult



 44

Byusingprincipalstresstheory2
2
2
1
/414
/360
)(
)(
mMN
mMNAs
b
a
cult
tult
ult
ult







 2
1 /120 mMN
Maximumprincipalstress=360/3=120MN/m
2
(tension).According
toMohr'stheory,inthesecondandfourthquadrant
From(a)and(b)
45

Therefore 2
2
2
/9401
1410360
120
mMNand 

 

TheMohr'sstresscircleconstructionforthesecondpartofthisproblem
isshowninFig.13.7.Ifthemaximumshearstressis390MN/m
2
,a
circleisdrawnofradius390unitstotouchthetwoenvelopelines.The
principalstressescanthenbereadoffas+200MN/m
2
and-580
MN/m
2
•1
11
21
21


culttult
culttult
and








46

cult
 tult
 360
tult
 1410
cult
 390
max 47

Fig 13.7 48

Now from second state21
21
max
21
21
21cult
21tult
2
max
2
2
1414
380
quadfourth in and
theorystress shearingBy
/390
















R
Also
Thus
mMN
49

Example 10-11
Thesolidcast-ironshaftshowninFig.10-40aissubjectedtoatorque
ofT=400Ib.ft.Determineitssmallestradiussothatitdoesnotfail
accordingtothemaximum-normal-stresstheory.Aspecimenofcast
iron,testedintension,hasanultimatestressof(σ
ult)
t=20ksi.
Solution
Themaximumorcriticalstressoccursatapointlocatedonthesurface
oftheshaft.Assumingtheshafttohavearadiusr,theshearstressis34max
..8.055
)2/(
)/.12)(.400(
r
inlb
r
rftinftlb
J
Tc 



50

51

52

Mohr'scircleforthisstateofstress(pureshear)isshowninFig.10-
40b.SinceR=
max,then
Themaximum-normal-stresstheory,Eq.10-31,requires
|
1|≤
ult3max21
..8.3055
r
inlb
  2
3
/000,20
..8.3055
inlb
r
inlb

Thus, the smallest radius of the shaft is determined from ..535.0
/000,20
..8.3055
2
3
Ansinr
inlb
r
inlb


53

ThesolidshaftshowninFig.10-41ahasaradiusof0.5in.andismade
ofsteelhavingayieldstressof
y=36ksi.Determineiftheloadings
causetheshafttofailaccordingtothemaximum-shear-stresstheory
andthemaximum-distortion-energytheory.
Example 10-12
Solution
Thestateofstressintheshaftiscausedbyboththeaxialforceandthe
torque.Sincemaximumshearstresscausedbythetorqueoccursinthe
materialattheoutersurface,wehave
54

ksi
in
ininkip
J
Tc
ksi
in
kip
A
P
xy
x
55.16
2/.)5.0(
.)5.0.(.25.3
10.19
.)5.0(
15
4
2





 Thestresscomponentsareshownactingonanelementofmaterialat
pointAinFig.10-41b.RatherthanusingMohr'scircle,theprincipal
stressescanalsobeobtainedusingthestress-transformationequations,
Eq.9-5.2
2
2,1
2
2
2,1
)55.16(
2
010.19
2
010.19
22





 



















xy
yxyx
55

= -9.55 ±19.11
CTI = 9.56 ksi
CT2 = -28.66 ksi
Maximum-Shear-StressTheory.Sincetheprincipalstresseshave
oppositesigns,thenfromSec.9.5,theabsolutemaximumshearstress
willoccurintheplane,andtherefore,applyingthesecondofEq.10-27,
wehave 
362.38
3666.2856.9
?
21



Y
56

Thus,shearfailureofthematerialwilloccuraccordingtothistheory.
Maximum-Distortion-EnergyTheory.ApplyingEq.10-30,wehave
Using this theory, failure will not occur.    
12961187
)36(66.2866.2856.956.9
)(
2
?
22
2
221
2
1



y
57

Maximum Normal Strain or Saint Venant’s
Criterion
Inthistheory,itisassumedthatamembersubjectedtoanystateof
stressfails(yields)whenthemaximumnormalstrainatanypoint
equals,theyieldpointstrainobtainedfromasimpletensionor
compressiontest(
y=σ
y/).
Principalstrainoflargestmagnitude|
max|couldbeoneoftwo
principalstrain
1and
2dependinguponthestressconditionsactingin
themember.ThusthemaximumPrincipalstraintheorymaybe
representedbythefollowingequation. 58

)1(
2max
1max








y
y

 Asstressinonedirectionproducesthelateraldeformationintheother
twoperpendiculardirectionsandusinglawofsuperposition,wefind
threeprincipalstrainsoftheelement.

x=

y=

z=
σ
x
σ
x / E
-μσ
x / E
-μσ
x / E
σ
y
μσ
y / E
σ
y / E
-μσ
y / E
σ
z
–μσ
z / E
-μσ
z / E
σ
z / E

x=

y=

z=

x=

y=

z= 59


x = σ
x/ E -μσ
y/ E -μσ
z/ E
= σ
x/ E -μ/ E(σ
y+ σ
z)

y = σ
y/ E -μσ
x/ E -μσ
z/ E
= σ
y/ E -μ/ E(σ
x+ σ
z)

z = σ
z/ E -μσ
y/ E -μσ
x/ E
= σ
z/ E -μ/ E(σ
x+ σ
y)
(2)
Thus)3(
)(
)(
)(
12
3
3
31
2
2
32
1
1
























E
E
E
E
E
E
60

Also )6(
)5(
Then
and
4and1Equating
)4()2(
12y
21y
12
2
21
1
21
1














EE
EEE
dFor
EE
y
y
61

TheyieldsurfaceABCDisthestraightunderbiaxialtensionorbiaxial
compressionIndividualprincipalstressesgreaterthanσ
ycanoccur
withoutcausingyielding.
62

Maximum Shear Strain Energy (Distortion
Energy Criterion (Von MISES Criterion)
Accordingtothistheorywhenamemberissubjectedtoanystateof
stressfails(yields)whenthedistortionenergyperunitvolumeata
pointbecomesequaltothestrainenergyofdistortionperunitvolumeat
failure(yielding)inuniaxialtension(orcompression).
Thedistortionstrainenergyisthatenergyassociatedwithachangein
theshapeofthebody.
Thetotalstrainenergyperunitvolumealsocalledstrainenergy
densityistheenergyinabodystoredinternallythroughoutitsvolume
duetodeformationproducedbyexternalloading.Iftheaxialstress
63

arisinginatensiontestis“”andthecorrespondingaxialstrainisε
thentheworkdoneoraunitvolumeofthetestspecimenistheproduct
ofmeanvalueoftheforceperunitarea(/2)timesthedisplacementin
thedirectionoftheforce,orε.Theworkisthus)1(
2

U
Thisworkisstoredasinternalstrainenergy.
WhenanelasticelementsubjectedtotriaxialloadingasshowinFigthe
stressescanberesolvesintothreeprincipalstressesσ
1,σ
2andσ
3.where
1,2and3aretheprincipalaxes.Thesethreeprincipalstresseswillbe
accompaniedbytheseprincipalstrainrelatedtothestressesby
equations3,4and5
64

Ifitisassumedthatloadsareappliedgraduallyandsimultaneousthen
stressesandstrainwillincreaseinthesamemanner.Thetotalstrain
energyperunitvolumeinthesumofenergiesproducedbyeachofthe
stresses(asenergyisascalarquantity)E
u
E
)(
321
1



 E
u
E
)(
312
2



 E
u
E
)(
213
3




(2)
(3)
(4)
65

Whereε
1,ε
2,andε
3,arethenormalstraininthedirectionofprincipal
stressesrespectivelyofstrainareexpressedintermofstressesthan
equation(5)takenthefollowingform)5(,
2
1
,,
2
1
,,
2
1
3322  U 






































EEEEEEEEE
U
213
3
312
2
321
1
2
1
2
1
)(
2
1 











Whichcanbereducedto  )6()(2
2
1
323121
3
3
2
2
2
1  
E
U
66

Asthedeformationofamaterialcanbeseparatedintotwoparts
(a)Changeinvolume,(b)changeinshapeordistortion.
Similarlythetotalstrainenergycanbebrokenintotwoparts.Onepart
representingtheenergyneededtocausevolumechangeoftheelement
withnochangeinshape(U
v)andtheotherpartrepresentingtheenergy
neededtodistorttheelement(U
d).)7(
dvUUU 
Theprincipalstressesσ
1,σ
2andσ
3ofFig.(01)canberesolvedintotwo
statesofstressesinFig.(02)b&c.thestateofstressshowninFig.b
representsahydrostaticstressconditioninwhichalltheseprincipal
stressareequaltothequantityσ. 67


1

3

1
(a)



(b)

1-

3-

2-
(c)
68

Somematerialsweresubjectedtohydrostaticpressureresultingin
appreciablechangesinvolumebutnochangeinshapeandnofailureby
yielding.Thereforetheremainingportionofthestress(
1-),(
2-)
and(
3-)willresultindistortiononly(Novolumechange)andthe
algebraicsumofthethreeprincipalstrainsproducedbythethree
principalstresses(
1-
ave),(
2-
ave)and(
3-
ave)mustbeequalto
zero.i.e

1+ε
2+ε
3)d=0 (9)
Expressing strains in term of stresses.
69

     
    
    0
213
132
321321





 dE    
   
   


2
2
2
213
132
321


 

2
22
213
132321

  63
333222111   63222
332211  70

a)One part that causes Volumetric (U
v)
b)Change and one causes distortion an (U
d) )4(
dvUUU 
a)As according to theory of distortion only energy due to
distortion is responsible for failure. Some experimental evidence
supports this assumption some materials were subjected to
hydrostatic pressure result in appreciable changes in volume but
no change in shape and no failure by yielding. The hydrostatic
pressure is the average of three principal stresses 
1
2and 
3
known as average stress. )5(
3
321
max




71

Thisprincipalstrainsεinthematerial.
DuetotherePrincipalstresses(
1,
2,
3)threeprincipalstrainsε
1,ε
2,
andε
3,areproduced.ThestateofstressinFigbelowwillresultin
distortiononly(Novolumechange)ifsumofthreenormalstrainsis
zero.Thatis    
  
)6(0
2
221
)(
213
3123221
321 












u
E
E
Which eh reduces to  
)5(3/
03)21(
321
321




72

Thenormalstrainscorrespondingtothesestressesarefoundfromthree
dimensionfromofHook’slawgivenbythefollowingequation.)7()21(
E


Strainenergyresultingfromthesestressesorstrainscanbeobtainedby
subjectthroughthesevaluesis)8(.
2
3
.
2
1
.
2
1
.
2
1
,
321321




Uv
73

(5)3
)()21(
3
)(
.
2
3
321321
 

E
u
U
v 2
321 )(
6
)21(
 


E
u
U
v
(9)
Strain energy due to distortion
U=U
y+ U
d
U
d= U-U
y    













2
321323121
2
3
2
2
2
1
6
21
2
2
1

E
u
u
E
U
d
(10)   
2
321323121
2
3
2
2
2
1 21)(6)(3
6
1
  uu
E
U
d
74

Whenthethirdforceinthe    
2
113
2
3
2
332
2
2
2
221
2
1 222
6
1
 


E
u
U
d     
2
13
2
32
2
21
6
1
 


E
u
U
d
(12)
(13)
Forbiaxialstresssystem,σ
3=0 
2
221
2
12
3
1
 


E
u
U
d
(14)
Foruniaxialstresssystem
2
1
3
1

E
u
U
d


(15)
75

ForDistortiontheorythefailureoccurswhendistortionenergyofthe
memberhoweverequaltothestrainenergyofdistortionatfailure
(yielding)inuniaxialtorsion(orequilibrium).Sosubstitutingσ
1=σ
yin
equ(15)
2
2
6
1
yd
E
u
U 


(16)
Andequatingitwith(13)    
2
13
2
32
2
21
2
6
1
)2(
6
1
 



E
u
E
u
y    
2
13
2
32
2
21
2
2  
y
(17)
76

Forbiaxialstresssystem2
221
2
1
2
2  
y
(18)
77
Tags