Theories of Failure
Failureofamemberisdefinedasoneoftwoconditions.
1.Fractureofthematerialofwhichthememberismade.Thistype
offailureisthecharacteristicofbrittlematerials.
2. Initiationofinelastic(Plastic)behaviorinthematerial.Thistype
offailureistheonegenerallyexhibitedbyductilematerials.
When an engineer is faced with the problem of design using a specific
material, it becomes important to place an upper limit on the state of
stress that defines the material's failure. If the material is ductile, failure
is usually specified by the initiation of yielding, whereas if the material is
brittle it isspecified by fracture.
1
Thesemodesoffailurearereadilydefinedifthememberissubjectedto
auniaxialstateofstress,asinthecaseofsimpletensionhowever,ifthe
memberissubjectedtobiaxialortriaxialstress,thecriteriaforfailure
becomesmoredifficulttoestablish.
Inthis section we will discuss four theories that are often used in
engineering practice to predict the failure of a material subjected to a
multiaxial state of stress.
A failure theory is a criterion that is used in an effort to predict the failure
of a given material when subjected to a complex stress condition.
2
i.Maximumshearstress(Tresca)theoryforductilematerials.
ii.Maximumprincipalstress(Rankine)theory.
iii.Maximumnormalstrain(SaintVenan’s)theory.
iv.Maximumshearstrain(DistortionEnergy)theory.
Several theories are available however, only four important theories are
discussed here.
3
MaximumshearstresstheoryforDuctileMaterials
TheFrenchengineerTrescaproposedthistheory.Itstatesthata
membersubjectedtoanystateofstressfails(yields)whenthe
maximumshearingstress(τ
max)inthememberbecomesequaltothe
yieldpointstress(τ
y)inasimpletensionorcompressiontest(Uniaxial
test).Sincethemaximumshearstressinamaterialunderuniaxialstress
conditionisonehalfthevalueofnormalstressandthemaximum
normalstress(maximumprincipalstress)is
max,thenfromMohr’s
circle.2
max
max
4
5
If both of principal stresses are of the same sign tension
compression then
σ
1<σ
y (4)
σ
2<σ
y (5)
IncaseofBiaxialstressstate)3(
22
)2(
22
21
21
max
21minmax
max
y
y
y
6
Problem 02
Thestateofplanestressshownoccursatacriticalpointofasteel
machinecomponent.Asaresultofseveraltensiletests,ithasbeenfound
thatthetensileyieldstrengthis
y=250MPaforthegradeofsteelused.
Determinethefactorofsafetywithrespecttoyield,using(a)the
maximum-shearing-stresscriterion,and(b)themaximum-distortion-
energycriterion.
17
18
SOLUTION
Mohr's Circle. We construct Mohr's circle for the given state of stress
and find MPaOC
yxave
20)4080()(
2
1
2
1
MPaFXCFR
m 65)25()60()()(
2222
Principal StressesMPaCAOC
a 856520 MPaCAOC
b 456520
a.Maximum-Shearing-StressCriterion.Sinceforthegradeofsteelused
thetensilestrengthisay=250MPa,thecorrespondingshearingstressat
yieldisMPaMPa
YY 125)250(
2
1
2
1
19
MPaFor
m65 2.19.
65
125
. SF
MPa
MPa
SF
m
Y
20
b.Maximum-Distortion-EnergyCriterion.Introducingafactorofsafety
intoEq.(7.26),wewrite2
22
.
SF
Y
bbaa
For
a= +85 MPa,
b= -45 MPa, and
y= 250 MPa, we have
2
22
.
250
45458585
SF 19.2.
.
250
3.114 SF
SF
21
Thus,shearfailureofthematerialwilloccuraccordingtothistheory.
Maximum-Distortion-EnergyTheory.ApplyingEq.10-30,wehave
Using this theory, failure will not occur.
12961187
)36(66.2866.2856.956.9
)(
2
?
22
2
221
2
1
y
27
Maximum Principal Stress theory or
(Rankine Theory)
Accordingtothistheory,itisassumedthatwhenamemberis
subjectedtoanystateofstress,fails(fractureofbrittlematerialor
yieldingofductilematerial)whentheprincipalstressoflargest
magnitude.(
1)inthememberreachestoalimitingvaluethatisequal
totheultimatenormalstress,thematerialcansustainwhensubjectedto
simpletensionorcompression.
The equations are shown graphically as)1(
1 ult
)2(
2 ult
28
ult These equations are shown graphically if the point obtained by plotting
the values of
1+
2falls within the square area the member is safe.
29
determinetherequiredwallthicknessusing(a)themaximumnormal
stresstheory,and(b)theHuber-vonMises-Henckytheory.
P=600psi.
r=15"
y=39000psi
F.O.S=3
t=?
Accordingto
c
Circumferential stress / girth stresswhere
Pr
t
c
31
By comparing
1=
c.
Thus, According to the normal stress theory, maximum Principal stress
should be equal to yield stress/FOS i.e.
|
1| ≤
ult |
2| ≤
ult
f = maximum (|
1|, |
2|, |
3| -
ult= 0)tt
t
stressallengitudinFor
tt
c
l
c
4500
2
"15600
2
Pr
9000"15600
32
As
y= 39000psi.69.0
9000
13000
9000
3
39000
Anst
t
t
Problem02:-
ThesolidcircularshaftinFig.18-12(a)issubjecttobeltpullsat
eachendandissimplysupportedatthetwobearings.Thematerialhas
ayieldpointof36,000Ib/in
2
•Determinetherequireddiameterofthe
shaftusingthemaximumnormalstresstheorytogetherwithasafety
factorof3.
33
400 + 200 lb
200 + 500 lb
34
35
0
42800
64
2
4200
.42006700
.36006600
64
2
3
4
4
y
x
x
B
x
d
d
d
inlbMc
inlbM
d
I
d
c
I
Mc
36
inlb
OR
inlb
T
d
d
d
J
Tr
xy
xy
.480024200
24)200400(
.480016300
16)200500(
480,24
32
2
4800
3
4
xy
yx
yx
xy
3
480,24
d
xy 3
800,42
d
x x 37
Now from second state21
21
max
21
21
21cult
21tult
2
max
2
2
1414
380
quadfourth in and
theorystress shearingBy
/390
R
Also
Thus
mMN
49
Example 10-11
Thesolidcast-ironshaftshowninFig.10-40aissubjectedtoatorque
ofT=400Ib.ft.Determineitssmallestradiussothatitdoesnotfail
accordingtothemaximum-normal-stresstheory.Aspecimenofcast
iron,testedintension,hasanultimatestressof(σ
ult)
t=20ksi.
Solution
Themaximumorcriticalstressoccursatapointlocatedonthesurface
oftheshaft.Assumingtheshafttohavearadiusr,theshearstressis34max
..8.055
)2/(
)/.12)(.400(
r
inlb
r
rftinftlb
J
Tc
50
51
52
Mohr'scircleforthisstateofstress(pureshear)isshowninFig.10-
40b.SinceR=
max,then
Themaximum-normal-stresstheory,Eq.10-31,requires
|
1|≤
ult3max21
..8.3055
r
inlb
2
3
/000,20
..8.3055
inlb
r
inlb
Thus, the smallest radius of the shaft is determined from ..535.0
/000,20
..8.3055
2
3
Ansinr
inlb
r
inlb
53
Thus,shearfailureofthematerialwilloccuraccordingtothistheory.
Maximum-Distortion-EnergyTheory.ApplyingEq.10-30,wehave
Using this theory, failure will not occur.
12961187
)36(66.2866.2856.956.9
)(
2
?
22
2
221
2
1
y
57
Maximum Normal Strain or Saint Venant’s
Criterion
Inthistheory,itisassumedthatamembersubjectedtoanystateof
stressfails(yields)whenthemaximumnormalstrainatanypoint
equals,theyieldpointstrainobtainedfromasimpletensionor
compressiontest(
y=σ
y/).
Principalstrainoflargestmagnitude|
max|couldbeoneoftwo
principalstrain
1and
2dependinguponthestressconditionsactingin
themember.ThusthemaximumPrincipalstraintheorymaybe
representedbythefollowingequation. 58
)1(
2max
1max
y
y
Asstressinonedirectionproducesthelateraldeformationintheother
twoperpendiculardirectionsandusinglawofsuperposition,wefind
threeprincipalstrainsoftheelement.
x=
y=
z=
σ
x
σ
x / E
-μσ
x / E
-μσ
x / E
σ
y
μσ
y / E
σ
y / E
-μσ
y / E
σ
z
–μσ
z / E
-μσ
z / E
σ
z / E
x=
y=
z=
x=
y=
z= 59
x = σ
x/ E -μσ
y/ E -μσ
z/ E
= σ
x/ E -μ/ E(σ
y+ σ
z)
y = σ
y/ E -μσ
x/ E -μσ
z/ E
= σ
y/ E -μ/ E(σ
x+ σ
z)
z = σ
z/ E -μσ
y/ E -μσ
x/ E
= σ
z/ E -μ/ E(σ
x+ σ
y)
(2)
Thus)3(
)(
)(
)(
12
3
3
31
2
2
32
1
1
E
E
E
E
E
E
60
Also )6(
)5(
Then
and
4and1Equating
)4()2(
12y
21y
12
2
21
1
21
1
EE
EEE
dFor
EE
y
y
61
Ifitisassumedthatloadsareappliedgraduallyandsimultaneousthen
stressesandstrainwillincreaseinthesamemanner.Thetotalstrain
energyperunitvolumeinthesumofenergiesproducedbyeachofthe
stresses(asenergyisascalarquantity)E
u
E
)(
321
1
E
u
E
)(
312
2
E
u
E
)(
213
3
(2)
(3)
(4)
65
a)One part that causes Volumetric (U
v)
b)Change and one causes distortion an (U
d) )4(
dvUUU
a)As according to theory of distortion only energy due to
distortion is responsible for failure. Some experimental evidence
supports this assumption some materials were subjected to
hydrostatic pressure result in appreciable changes in volume but
no change in shape and no failure by yielding. The hydrostatic
pressure is the average of three principal stresses
1
2and
3
known as average stress. )5(
3
321
max
71
(5)3
)()21(
3
)(
.
2
3
321321
E
u
U
v 2
321 )(
6
)21(
E
u
U
v
(9)
Strain energy due to distortion
U=U
y+ U
d
U
d= U-U
y
2
321323121
2
3
2
2
2
1
6
21
2
2
1
E
u
u
E
U
d
(10)
2
321323121
2
3
2
2
2
1 21)(6)(3
6
1
uu
E
U
d
74
Whenthethirdforceinthe
2
113
2
3
2
332
2
2
2
221
2
1 222
6
1
E
u
U
d
2
13
2
32
2
21
6
1
E
u
U
d
(12)
(13)
Forbiaxialstresssystem,σ
3=0
2
221
2
12
3
1
E
u
U
d
(14)
Foruniaxialstresssystem
2
1
3
1
E
u
U
d
(15)
75
ForDistortiontheorythefailureoccurswhendistortionenergyofthe
memberhoweverequaltothestrainenergyofdistortionatfailure
(yielding)inuniaxialtorsion(orequilibrium).Sosubstitutingσ
1=σ
yin
equ(15)
2
2
6
1
yd
E
u
U
(16)
Andequatingitwith(13)
2
13
2
32
2
21
2
6
1
)2(
6
1
E
u
E
u
y
2
13
2
32
2
21
2
2
y
(17)
76