Theory of Equation

4,171 views 15 slides Oct 30, 2019
Slide 1
Slide 1 of 15
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15

About This Presentation

Transformations of Equations


Slide Content

Theory of Equations –18UMTC12
Mrs.P.Kalaiselvi, M.Sc.,M.A.,
Ms.S.Swathi Sundari, M.Sc.,M.Phil.,

Preliminaries -Polynomials

Preliminaries
Solving an equations by using
various methods
Algebraic Long Division Method
Synthetic Division Method
Completing The Square Method
Factorization Method
Special Quadratic Formula (only for solving
quadratic equation)

Preliminaries –Solving an equation by using
Algebraic Long Division Method

Preliminaries –Solving an equation by using

Preliminaries –Solving an equation by using
Factorization Method

Preliminaries –Solving an equation by using

Preliminaries –Solving an equation by using
Special Quadratic Formula

Preliminaries –Solving an equation by using
Special Quadratic Formula

RESULTS
RemainderTheorem:Iff(x)isapolynomial,thenf(a)is
theremainderwhenf(x)isdividedbyx-a.
Iff(a)andf(b)areofdifferentsigns,thenatleastone
rootoftheequationf(x)=0mustliebetweenaandb.
Iff(x)=0isanequationofodddegree,ithasatleastone
realrootwhosesignisoppositetothatofthelastterm.
Iff(x)=0isanequationofevendegreeandtheabsolute
termisnegative,equationhasatleastonepositiveroot
andatleastonenegativeroot.
Everyequationf(x)=0ofthe degreehasnrootsand
nomore.
Inanequationwithreal(rational)coefficients,imaginary
(irrational)rootsoccurinpairs.

Relation Between Roots and the Coefficients

Transformationsof Equations
ReciprocalEquations:Anequationinwhichthereciprocalofevery
rootoftheequationisalsoitsrootiscalledareciprocalequation.(Or)
Anequation,whichremainsunchangedwhenxisreplacedby1/xis
calledareciprocalequation.
Note:Insuchanequation,thecoefficientsfromoneendareequalto
thecoefficientsfromtheotherend(or)Equalinmagnitudeand
oppositeinsign.
Remark:
Whenanodddegreeequation,
•Ifthecoefficientshavelikesigns,then-1isaroot.
•Ifthecoefficientsofthetermsequidistantfromthefirstandlast
haveoppositesigns,then+1isaroot.
Thedegreeisevenandthecoefficientsofthetermsequidistant
fromthefirstandlastareequalandhavethesamesign.

Transformationsof Equations
If aretherootsoff(x)=0,theequation
i.Whoserootsare isf(1/x)=0.
ii.Whoserootsare isf(x/k)=0.
iii.Whoserootsare isf(x+h)=0.
iv.Whoserootsare isf(x-h)=0.
v.Whoserootsare isf(√x)=0.
Inanreciprocalequation,increasingbyhtherootsofthe
equationisthesameasdiminishingtherootsby–h.