Thermal testing, thermo mechanical and dynamic mechanical analysis & chemical testing, unit-v; testing of materials

ThirumalValavan2 1,223 views 135 slides Oct 12, 2020
Slide 1
Slide 1 of 135
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135

About This Presentation

Unit-V: THERMAL TESTING, THERMO-MECHANICAL AND DYNAMIC MECHANICAL ANALYSIS & CHEMICAL TESTING [OTHER TESTING].
Subject Name: OML751 Testing of Materials
Topics: Thermal Testing: Differential scanning calorimetry, Differential thermal analysis. Thermo-mechanical and Dynamic mechanical analysis: ...


Slide Content

OML751 -TESTING OF MATERIALS
VII SEMESTER
[R 2017 -Open Elective Subject]
©S.Thirumalvalavan, Assistant Professor,
Department of Mechanical Engineering,
E-Mail : [email protected]
UNIT V -OTHER TESTING
THERMAL TESTING, THERMO-MECHANICAL AND
DYNAMIC MECHANICAL ANALYSIS & CHEMICAL TESTING
1

OML751 –TESTING OF MATERIALS -SYLLABUS
UNITV OTHERTESTING 9
ThermalTesting:Differentialscanningcalorimetry,Differentialthermalanalysis.Thermo-
mechanicalandDynamicmechanicalanalysis:Principles,Advantages,Applications.Chemical
Testing:X-RayFluorescence,ElementalAnalysisbyInductivelyCoupledPlasma-Optical
EmissionSpectroscopyandPlasma-MassSpectrometry.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 2

UNIT-V : OTHER TESTING
ThermalTesting:
Differentialscanningcalorimetry
Differentialthermalanalysis.
Thermo-mechanicalandDynamicmechanicalanalysis:
Principles,Advantages,Applications
ChemicalTesting:
X-RayFluorescence,
ElementalAnalysisbyInductivelyCoupledPlasma-OpticalEmissionSpectroscopy&
Plasma-MassSpectrometry.
3https://www.slideshare.net/ThirumalValavan2/

Materialtesting,measurementofthecharacteristicsandbehaviorofsuchsubstancesas
metals,ceramicsorplasticsetc.,undervariousconditions.
Investigatorsmayconstructmathematicalmodelsthatutilizeknownmaterialcharacteristics
andbehaviourtopredictcapabilitiesofthestructure.
Overview
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 4

Materialstestingbreaksdownintomajorcategories
MechanicalTesting&NonDestructiveTesting
Testingforphysical&chemicalproperties
Testingforthermalproperties
Testingforelectricalproperties
Testingforresistancetocorrosion,Radiationandbiologicaldeterioration
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 5

Thermalanalysisisaformofanalyticaltechniquemostcommonlyusedinthebranchof
materialssciencewherechangesinthepropertiesofmaterialsareexaminedwithrespectto
temperature.
Itisagroupoftechniquesinwhichchangesofphysicalorchemicalpropertiesofthesampleare
monitoredagainsttimeortemperature,whilethetemperatureofthesampleisprogrammed.
Thetemperatureprogrammayinvolveheatingorcoolingatafixedrate,holdingthe
temperatureconstant(isothermal),oranysequenceofthese.
Thesampleissubjectedtoapredefinedheatingorcoolingprogram.
Thesampleisusuallyinthesolidstateandthechangesthatoccuronheatingincludemelting,
phasetransition,sublimationanddecomposition.
THERMAL ANALYSIS
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 6

ThermalAnalysis(TA)isagroupoftechniquesinwhichchangesofphysicalorchemicalpropertiesofthe
samplearemonitoredagainsttimeortemperature,whilethetemperatureofthesampleisprogrammed.
Thetemperatureprogrammayinvolveheatingorcoolingatafixedrate,holdingthe
temperatureconstant(isothermal),oranysequenceofthese.
Thesampleissubjectedtoapredefinedheatingorcoolingprogram.
Thesampleisusuallyinthesolidstateandthechangesthatoccuronheatingincludemelting,phase
transition,sublimation,anddecomposition.
Application of thermal analysis in characterization ofsolids
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 7

Thermalconductivity
Specificheat
Thermalexpansion
Thermalstress
Thermo-Elasticeffect
Thermalshock
Meltingpointorheatresistance
Emissivityofmaterials
Latentheatoffusionofmaterials
Latentheatofvaporizationofmaterials
Thermal Properties
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 8

Thermaltestinginvolvestestingaproductattheextremesofitsintendedusethermal
environmentforheatingrate,temperatureandairfloworgaseousatmosphereorvacuum
withmeasuringcasetemperaturesonindividualcomponentstodeterminetheeffecton
productperformanceandlong-termreliability.
Itmeasuresbasedondynamicrelationshipbetweentemperature,mass,volumeandheat
ofreaction.
THERMAL TESTING
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 9

Differentialthermalanalysis
Dilatometer
Differentialscanningcalorimetry
Dynamicmechanicalanalysis
Thermogravimetricanalysis
Thermomechanicalanalysis
Thermoopticalanalysis
Major methods of Thermal testing
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 10
Othercommonmethodofthermalmethods
Dielectricthermalanalysis
Evlovedgasanalysis
Laserflashanalysis
Derivatography

Parameters of Thermal testing
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 11
SI.No METHOD PARAMETER TESTING
1ThermogravimetricAnalysis Mass changes
2Differential Thermal Analysis Temperature Difference
3Differential Scanning Calorimetry Heat Difference
4Evolved Gas Analysis Gas Decomposition
5Thermo MechanicalAnalysis Deformationand Dimension
6Dilatometer Volume
7Dielectric thermal analysis Electrical properties
8Thermo optical analysis Optical properties

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 12
DifferentialThermalAnalysis(DTA):Thetemperaturedifferencebetweenasampleandaninertreference
material,ΔT=TS-TR,ismeasuredasbotharesubjectedtoidenticalheattreatments.
DifferentialScanningCalorimetry(DSC):Thesampleandreferencearemaintainedatthesametemperature,
evenduringathermalevent(inthesample).Theenergyrequiredtomaintainzerotemperaturedifferential
betweenthesampleandthereference,dΔq/dt,ismeasured.
ThermogravimetricAnalysis(TGA):Thechangeinmassofasampleonheatingismeasured
Dynamic Mechanical Analysis: Viscoelastic Properties
Thermo mechanical Analysis: Thermal Expansion Coefficient
Dielectric Thermal Analysis
Evolved Gas Analysis
Thermo-Optical Analysis
Dilatometry
Types of Thermal Analysis Techniques

TheTGAisatypeofthermoanalyticaltestingperformedonmaterialstodeterminechanges
inweightinrelationtochangesintemperature.
TheTGAreliesonahighdegreeofprecisioninthreemeasurements:Weight,Temperature
andTemperaturechange.
TheTGAiscommonlyemployedinresearchandtestingtodeterminecharacteristicsof
materials,todeterminedegradationtemperatures,absorbedmoisturecontentofmaterials,
thelevelofinorganicandorganiccomponentsinmaterials,decompositionpointsof
explosivesandsolventresidues.
THERMOGRAVIMETRIC ANALYSIS (TGA)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 13

14
1.DIFFERENTIAL SCANNING CALORIMETRY (DSC)
2.DIFFERENTIAL THERMAL ANALYSIS (DTA)
https://www.slideshare.net/ThirumalValavan2/

DSCmeasurestheenergyabsorbedorreleasedfromasampleasafunctionoftimeora
temperatureprofile.
DSCisusefultomakethemeasurementsformeltingpoints,heatsofreaction,glass
transition,andheatcapacity.
DIFFERENTIAL SCANNING CALORIMETRY (DSC)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 15

DSCisbasedontheprinciple,sampleandreferencearemaintainedatthe
sametemperature,evenduringathermalevent(inthesample).Theenergy
requiredmaintainingzerotemperaturedifferentbetweenthesampleandthe
referenceismeasured.
Bycalibratingthestandardmaterials(referencematerial),theunknown
samplequantitativemeasurementisachievable.
DSC –PRINCIPLE
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 16

Power compensation DSC Heat fluxDSC
PRINCIPLE:DSCdiffersfundamentallyfromDTAinthatthesampleandreferencearebothmaintainedatthe
temperaturepredeterminedbytheprogram(i.e.ΔTofreference/sampleismaintained@0)
Duringathermaleventinthesample,thesystemwilltransferheattoorfromthesamplepantomaintainthesame
temperatureinreferenceandsamplepans.
Currentrequiredtomaintainisothermalconditionsisrecorded
Endothermicprocesseswilllowerthesampletemperaturerelativetothatofreference,sothesamplemustbe
heatedmoreinordertomaintainequalTinbothpans
TwobasictypesofDSCinstruments:powercompensationandheat-flux
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 17

TherearefivedifferenttypesofDSCinstrument
HeatfluxDSC
PowercompensatedDSC
ModulatedDSC
HyperDSC
PressureDSC
ThemostcommonmethodsarePowercompensatedDSC&HeatfluxDSC
DIFFERENTIAL SCANNING CALORIMETRY (DSC) -TYPES
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 18

Temperaturesofthesampleandreferencearecontrolledindependentlyusingseparate,identicalfurnaces.
Thetemperaturesofthesampleandreferencearemadeidenticalbyvaryingthepowerinputtothetwofurnaces;the
energyrequiredtodothisisameasureoftheenthalpyorheatcapacitychangesinthesamplerelativetothereference.
Sample holder:Al or Platinum pans
Sensors
Pt resistance thermocouples
separate sensors and heaters for the sample and reference
Furnace
Separate blocksfor sampleand reference
cells
Temperature controller
differential thermal power is supplied to the heaters to maintain
the temperature of the sample and reference at the program value
Power CompensationDSC
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 19

•Thepowerneededtomaintainthesampletemperatureequaltothereference
temperatureismeasured.
•InpowercompensationDSCtwoindependentheatingunitsareemployed.
•Theseheatingunitsarequitesmall,allowingforrapidratesofheating,coolingand
equilibration.Theheatingunitsareembeddedinalargetemperature-controlledheatsink.
•Thesampleandreferenceholdershaveplatinumresistancethermometerstocontinuously
monitorthetemperatureofthematerials.
•Theinstrumentrecordsthepowerdifferenceneededtomaintainthesampleand
referenceatthesametemperatureasafunctionoftheprogrammedtemperatures.
Working
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 20

•PowercompensatedDSChaslowersensitivitythanheatfluxDSC,butitsresponsetimeis
morerapid.ItisalsocapableofhigherresolutionthenheatfluxDSC.
•ThismakespowercompensatedDSCwellsuitedforkineticsstudiesinwhichfast
equilibrationstonewtemperaturesettingareneeded.
Working
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 21

Sampleandreferenceareconnectedbyalowresistanceheatflowpath(ametaldisc).Theassemblyisenclosedina
singlefurnace.
Enthalpyorheatcapacitychangesinthesamplecauseadifferenceinitstemperaturerelativetothereference;the
resultingheatflowissmallcomparedwiththatindifferentialthermalanalysis(DTA)becausethesampleandreference
areingoodthermalcontact.
Thetemperaturedifferenceisrecordedandrelatedtoenthalpychangeinthesampleusingcalibrationexperiments
HEAT FLUXDSC
One blocks for both sample and reference cells
22

HEAT FLUXDSC
Sampleholder
Sampleandreferenceareconnectedbyalow-resistanceheatflowpath
AlorPtpansplacedonconstantandisc
Sensors:Chromel®-alumelthermocouples
Furnace
Oneblockforbothsampleandreferencecells
Heatingblockdissipatesheattothesample
andreferenceviatheconstantandisc
One blocks for both sample and reference cells
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 23

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 24

•ThemainassemblyoftheDSCcellisenclosedinacylindrical,silverheatingblack,which
dissipatesheattothespecimensviaaconstantandiscwhichisattachedtothesilver
block.
•Thediskhastworaisedplatformsonwhichthesampleandreferencepansareplaced.
•Achromeldiskandconnectingwireareattachedtotheundersideofeachplatform,and
theresultingchromel-constantanthermocouplesareusedtodeterminethedifferential
temperaturesofinterest.
•Alumelwiresattachedtothechromediscsprovidethechromel-alumeljunctionsfor
independentlymeasuringthesampleandreferencetemperature.
WORKING
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 25

•Glasstransitions
•Meltingandboilingpoints
•Crystallizationtimeandtemperature
•Percentcrystallinity
•Heatsoffusionandreactions
•Specificheatcapacity
•Oxidative/thermalstability
•Reactionkinetics
•Purity
DSC –Measures
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 26

Temperaturecontroller
Thetemperaturedifferencebetweenthesampleandreferenceisconvertedtodifferentialthermalpower,
dΔq/dt,whichissuppliedtotheheaterstomaintainthetemperatureofthesampleandreferenceattheprogram
value
Temperature,K
dH/dt,
mJ/s
Thermogram
exo
Glass transition
melting
crystallization
endo
Output ofDSC
DSC Curve
27

Factors affecting DSC Curve
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 28

Calibration
Contamination
Samplepreparation–howsampleisloadedintoapan
Residualsolventsandmoisture
Thermallag
Heating/coolingrates
Samplemass
SOURCES OF ERRORS
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 29

•Instrumentscanbeusedatveryhightemperatures
•Instrumentsarehighlysensitive
•Flexibilityinsamplevolume/form
•Highresolutionobtained
•Highsensitivity
•Stabilityofthematerial.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 30
Advantages of DSC

•DSCgenerallyunsuitablefortwo-phasemixtures
•Difficultiesintestcellpreparationinavoidingevaporationofvolatile
solvents.
•DSCisgenerallyonlyusedforthermalscreeningofisolatedintermediates
andproducts
•Doesnotdetectgasgeneration
•Uncertaintyofheatsoffusionandtransitiontemperatures.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 31
Limitations of DSC

Toobservefusionandcrystallizationeventsaswellglasstransitiontemperature
Tostudyoxidation,aswellasotherchemicalreactions
Glasstransitionmayoccurasthetemperatureofanamorphoussolidisincreased.Thesetransition
appearasastepinthebaselineoftherecordedDSCsignal.Thisisduetothesampleundergoinga
changeinheatcapacity.
Asthetemperatureincreases,anamorphoussolidwillbecomelessviscous.Atsomepointthe
moleculesmayobtainenoughfreedomofmotiontospontaneouslyarrangethemselvesintoa
crystallineform.Thisisknownasthecrystallizationtemperature.Thistransitionfromamorphousto
crystallineisanexothermicprocess,andresultsinapeakintheDSCsignal.
Asthetemperatureincreasesthesampleeventfullyreachesitsmeltingpoint.Themeltingprocess
resultsinanendothermicpeakintheDSCcurve.
TheabilitytodeterminetransitiontemperatureandenthalpiesmakesDSCaninvaluabletollin
producingphasediagramforvariouschemicalsystems.
Application of DSC
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 32

2. DIFFERENTIAL THERMAL ANALYSIS (DTA)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 33

Differentialthermalanalysis(DTA)isathermo-analytical
techniquewhichisusedforthermalanalysiswherethermal
changescanbestudied.
Itisusedtodeterminetheoxidationprocess,decomposition,and
lossofwaterorsolvent
DIFFERENTIAL THERMAL ANALYSIS (DTA)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 34

PRINCIPLE:Atechniqueinwhichthetemperaturedifferencebetweena
substanceandreferencematerialismeasuredasafunctionoftemperature,
whilethesubstanceandreferencearesubjectedtoacontrolledtemperature
programme.
TherecordisthedifferentialthermalorDTAcurve;thetemperature
difference(ΔT)shouldbeplottedontheordinate(withendothermic
reactionsdownwardsandexothermicreactionsupwards)andtemperature
ortimeontheabscissaincreasingfromlefttoright.
Endothermicreaction(absorptionofenergy)includesvaporization,
sublimation,andabsorption&givesdownwardpeak.
Exothermicreaction(liberationofenergy)includesoxidation,
polymerization,andcatalyticreaction&givesupwardpeak.
DIFFERENTIAL THERMAL ANALYSIS (DTA)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 35

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 36

Furnace
Sampleholder
DCamplifier
Differentialtemperaturedetector(Thermogram)
Furnacetemperatureprogramme
Recorder
Controlequipment
DIFFERENTIAL THERMAL ANALYSIS (DTA) -COMPONENTS
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 37

Specimens
Sample
Reference(Knownsubstance,thermallyinertoverthetemprangeofinterest)
Sample holder
Container for sample and reference
Sensors
Pt/Rhorchromel/alumelthermocouplesoneforthesampleandoneforthe
referencejoinedtodifferentialtemperaturecontroller
Furnace
Aluminablockcontainingsampleandreferencecells
Temperature controller/ Programmer
Controlsfortemperatureprogramandfurnaceatmosphere
Uniform heating rate: 10-20
o
/min
Recorder
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 38

Thesampleunderinvestigationisloadedintoacontainer
ThiscontaineristhenplacedontothesamplepananditismarkedasS(meansample).
Samequantityofreferencesampleisplacedinanothercontainerwhichisthenplacedonto
thereferencepananditismarkedasR(meansreference).
Inordertoheatthesamplepanandthereferencepanatanidenticalrate,thedimensions
ofthesetwopansshouldbenearlyidentical;moreover,thesampleandthereference
shouldhaveequalweights,thermallymatchedandshouldbearrangedsymmetricallywith
thefurnace.
Themetalblockwhichsurroundsthepanactsasaheatsinkwhosetemperatureisincreased
slowlybyusinganinternalheater.
DIFFERENTIAL THERMAL ANALYSIS (DTA) -WORKING
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 39

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 40

Thesinkthenheatsthesampleandreferencematerialsimultaneously.
Twopairsofthermocouplesareused,onepairisincontactwiththesampleandthesecond
pairisincontactwiththereference.
Thermocoupleisattachedwithanamplifierwhichamplifiestheresultofdifferential
thermocoupleandsentthisresulttotheread-outdevicewhichdisplaystheresultsinthe
formofDTAcurveorThermogramasfunctionofthesampletemperature,reference
temperatureortime.
Nosignalisgeneratedifnotemperaturedifferenceisobservedeventhoughtheactual
temperaturesofboththesampleandreferenceareincreasing.
DIFFERENTIAL THERMAL ANALYSIS (DTA) -WORKING
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 41

Whenthereisaphysicalchangeinthesamplethenheatisabsorbedorreleased.
ForExample:whenametalcarbonateisdecomposedthencarbondioxideisreleased.This
isanendothermicreactionwheretheheatisabsorbedandthetemperatureofthesampleis
decreased.
Nowthesampleisatalowertemperaturethanthatofthereference.Thistemperature
differencebetweensampleandreferenceproducedanetsignal,whichisthenrecorded.
DIFFERENTIAL THERMAL ANALYSIS (DTA) -WORKING
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 42

If S and R are heated at the same rate, by placing them in the same furnace, their temperatures will rise
TR rises steadily, as the reference material is chosen to have no physical or chemical transitions
TSalsorisessteadilyintheabsenceofanytransitions,butifforinstancethesamplemelts,itstemperaturewill
lagbehindTRasitabsorbstheheatenergynecessaryformelting
Ifanexothermic(heat-producing)eventhadoccurred,thecurvewouldshowapeakintheoppositedirection
TheareaAonthecurveisproportionaltotheheatofthereaction:ΔH=K.A=KʃΔT.dt
K=Proportionalityconstantandincludesthermalpropertiesofthesubstance
DTA Curve –Differential Thermal Analysis Plot
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 43

DTA Curve
(a)The DTA curve or thermo gram is a plot
between differential temperature and time
(b) DTA curve may be endothermic (downward plot)
or exothermic (upward plot)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 44

Factors affecting DTA Curve
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 45

Advantages:
Instruments can be used at very hightemperatures
Instruments are highly sensitive
Flexibility in cruciblevolume/form
Characteristic transition or reaction temperatures can be accuratelydetermined
Determination of transition temperatures are accurate in aDTA.
Disadvantages:
Estimates of enthalpies of transition are generally not accurate i.e. Uncertainty of
heatsof fusion, transition, or reaction ; estimations is 20-50%.
Advantages & Disadvantagesof DTA
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 46

Applications of DTA
Rapid identification on the compositions of mixed clays
Polymers characteristics can be easily characterized
Degree of crystallinity can be measured
Qualitative and Quantitative Identification of Minerals: detection of any minerals in a
sample
Measures:
T
g (Glass transition temperature), T
m (Melting temperature), T
d (decomposition)
Heat of fusion, vaporization, crystallization,
Heat of reaction, decomposition, solution, adsorption
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 47

Atechniqueinwhichadeformationofthesampleundernon-oscillatingstressis
monitoredagainsttimeortemperaturewhilethetemperatureofthesample,ina
specifiedatmosphere,isprogrammed.
Thermomechanicalanalysis(TMA)easilyandrapidlymeasuressampledisplacement
(growth,shrinkage,movement,etc..)asafunctionoftemperature,timeandapplied
force.
THERMO-MECHANICAL ANALYSIS (TMA)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 48

Thermomechanicalanalysis(TMA)isusedtomeasurethedimensionalchangesofa
materialasafunctionoftemperaturebyapplyingstress.Thestressmaybe
compression,tension,flexureortorsion.
THERMO-MECHANICAL ANALYSIS -PRINCIPLE
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 49

Transducer–Linearvariabledisplacementtransducer(LVDT),Laseroptoelectronicetc.,
Probe(madeupofquartzglass)
Thermocouplefurnace
Forcegenerator
THERMO-MECHANICAL ANALYSIS -COMPONENTS
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 50

PROBES ON DIFFERENT LOADING CONDITION
Loading Condition Load Application Purpose
(a) Expansion /
Compression Probe
It is used for the measurement of
the deformation by the thermal
expansion and the transition of the
sample under the compressed
force is applied.
(b) Penetration Probe
It is used for the measurement of
the softening temperature
(c) Tension Probe
It is used for the measurement of
the thermal expansion and the
thermal shrinkage of the sample
such as the film and the fiber.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 51

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 52

Thesampleisinsertedintothefurnaceandistouchedbytheprobewhichisconnected
withthelengthdetectorandtheforcegenerator.Theconstructionofthepushrodand
sampleholderdependsonthemodeofthemeasurements.
THERMO-MECHANICAL ANALYSIS –Construction & Working
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 53

ThethermocoupleforTEMPERATUREMEASUREMENTISLOCATEDNEARTHESAMPLE.Therate
of5
o
C/minisusuallythemaximumrecommendedvalueforgoodtemperatureequilibration
acrossthespecimen.
Thesampletemperatureischangedinthefurnacebyapplyingtheforceontothesamplefrom
theforcegeneratorviaprobe.
Thesampledeformationsuchasthermalexpansionandsofteningwithchangingtemperature
ismeasuredastheprobedisplacementbythelengthdetector.LinearVariableDifferential
Transformer(LVDT)isusedforlengthdetectionsensor.
EverydisplacementofthepushrodistransformedintoananalogsignalbytheLVDT,converted
todigitalformandthenrecordedinthecomputersystem,andfinallypresentedbythe
softwareasadimensionalchangeversustimeortemperature.
THERMO-MECHANICAL ANALYSIS –Construction & Working
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 54

•Measurementofdimensionalchange
•Coefficientoflinearthermalexpansion
•Determinationofmaterialanisotropy
•Softeningtemperaturesandglasstransition
•Linearthermalexpansion
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 55
Applications

•Compactnessandlightness
•Lowoperationvoltage
•Measureslargedeformation
•Largeactuationforce
•Measuresrelaxationeffects
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 56
Advantages

•Usedonlyforsolidsamples
•Creepoccurringconcurrentlywithnormaldimensionalchanges
•Usageofproperprobe
•Lowoperationalspeed
57
Limitations
https://www.slideshare.net/ThirumalValavan2/

Thermomechanicaldynamicanalysis,otherwiseknownasDynamicMechanical
Analysis(DMA),isatechniquewhereasmalldeformationisappliedtoasampleina
cyclicmanner.
Thisallowsthematerialsresponsetostress,temperature,frequencyandother
valuestobestudied.Thetermisalsousedtorefertotheanalyzerthatperforms
thetest.
Dynamicmechanicalanalysis(DMA)isanimportanttechniqueusedtomeasurethe
mechanicalandviscoelasticpropertiesofmaterialssuchasthermoplastics,
thermosets,elastomers,ceramicsandmetals.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 58
THERMO-MECHANICAL DYNAMIC ANALYSIS (DMA)

Asinusoidalstressisappliedandthestraininthematerialismeasured,allowing
onetodeterminethecomplexmodulus.
Thetemperatureofthesampleorthefrequencyofthestressareoftenvaried,
leadingtovariationsinthecomplexmodulus;thisapproachcanbeusedto
locatedthetemperatureofthematerial,aswellastoidentifytransitions
correspondingtoothermolecularmotions.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 59
THERMO-MECHANICAL DYNAMIC ANALYSIS -PRINCIPLE

Forcedresonanceanalyzers–Analyzersforcethesampletooscillateatacertain
frequencyandarereliableforperformingatemperaturesweep.
Freeresonanceanalyzers–Freeresonanceanalyzersmeasurethefree
oscillationsofdampingofthesamplebeingtestedbysuspendingandswinging
thesample.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 60
TYPES OF THERMO MECHANICAL DYNAMIC ANALYZER

Stress(force)control–Thestructureofthesampleislesslikelytobedestroyed
andlongerrelaxationtimes/longercreepstudiescanbedone.
Strain(displacement)control–Thebettershorttimeresponseformaterialsof
lowviscosityandexperimentsofstressrelaxationaredonewithrelativeease.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 61
MODE OF ANALYZER

TransducerSensor(LinearVariableDisplacementTransducerLVDT)–Itiswhich
measuresachangeinvoltage.
Driveshaftorprobe–Itisasupportandguidancesystemtoactasaguidefor
theforcefromthemotortothesample.
Drivemotor–Alinermotorforprobeloadingwhichprovidesloadforthe
appliedforce.
Steppermotor–Itcontrolsthespecimendimensionandmeasurement.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 62
COMPONENTS

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 63
Cross sectional of Thermo mechanical dynamic analyzer

ThesampleisclampedinthemeasurementheadoftheDMAinstrument.
Duringmeasurement,sinusoidalforceisappliedtothesampleviatheprobeor
drivingshaft.
Deformationcausedbythesinusoidalforceisdetectedandtherelation
betweenthedeformationandtheappliedforceismeasured.
Propertiessuchaselectricityandviscosityarecalculatedfromtheappliedstress
andstrainplottedasafunctionoftemperatureortime.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 64
THERMO-MECHANICAL DYNAMIC ANALYSIS –WORKING

DIFFERENT LOADING CONDITION
Modes Stress application Purpose
Shear mode
Used for evaluationof thin fibers or
films or bundle of single fiber
3-point bending mode
Bestfor medium to high modulus
materials.
Dual cantilever mode
Highly damped materials can be
measured.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 65

DIFFERENT LOADING CONDITION
Modes Stress application Purpose
Singlecantilever mode Suited best for thermoplastics
Tension or compression
mode
Used for low medium modulus
materials
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 66

•Themostsuitabletypeshouldbeselecteddependingonthesampleshape,
modulusandmeasurementpurpose.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 67
DIFFERENT LOADING MODES

•Displacementandforce
•Widerangeofforce1mNto40N
•Widerangeoffrequency0.001to1000Hz.
•Widestiffnessrange.
•Coefficientofthermalexpansion(CTE)
•GlassTransitionTemperature
•CompressionModulusofpolymericmaterials
•Viscoelasticpropertiessuchas:
Storagemodulus(purelyelasticcomponent)
Lossmodulus(purelyviscouscomponent)
Losstangent
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 68
DMA MEASURES

•Itisanessentialanalyticaltechniquetodeterminingtheviscoelasticpropertiesof
polymers.
•Verysoftandhardsamplesaremeasured.
•Allowsaccuratetemperaturemeasurement.
•Itcanprovidemajorandminortransitionsofmaterials
•Itisalsomoresensitive
•Itisabletoquicklyscanandcalculatethemodulusforarangeoftemperatures.
•Itistheonlytechniquethatcandeterminethebasicstructureofapolymer
system.
•Thisanalyticalmethodisabletoaccuratelypredicttheperformanceofmaterials
inuse.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 69
ADVANTAGES

•Itleadstocalculationinaccuracies.
•Thelargeinaccuraciesareintroducedifdimensionalmeasurementsofsamples
areslightlyinaccurate.
•Theoscillatingstressconvertsmechanicalenergytoheatandchangesthe
temperatureofthesample.
•Themaintaininganexacttemperatureisimportantintemperaturescans,this
alsointroducesinaccuracies.
•Thefinalsourceofmeasurementuncertaintycomesfromcomputererror.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 70
LIMITATIONS

•Measurementoftheglasstransitiontemperatureofpolymers
•Varyingthecompositionofmonomers
•Effectivelyevaluatethemiscibilityofpolymers
•Tocharacterizetheglasstransitiontemperatureofamaterial
•Mechanicalpropertiesintherelevantfrequencyrange
•Modulusinformation
•Nonlinearproperties
•Dampingbehaviour
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 71
APPLICATION

Chemicalanalysisisusedtoidentifythecontents,compositionandqualityof
thematerialsusedinproductdevelopment,manufacturingandtesting.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 72
CHEMICAL ANALYSIS

Achemicalpropertyisacharacteristicorbehaviorofasubstancethatmaybe
observedwhenitundergoesachemicalchangeorreaction.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 73
CHEMICAL PROPERTY

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 74

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 75

Chemicaltestingprovidesavarietyofquantitativeandqualitativeservicesfor
verification,identificationandcomponentanalysisofferrousandnon-ferrous
metals.
76
CHEMICAL TESTING
https://www.slideshare.net/ThirumalValavan2/

Chemicaltreeanalysis
Elementaltraceanalysis
Failureanalysis
Contaminationanalysis
Materialsanalysisandtesting
Materialverification
Materialidentification
Chemicalcompositionanalysis
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 77
PURPOSE OF CHEMICAL TESTING

(A)CHROMATOGRAPHYTECHNIQUE
Gaschromatography
Ionchromatography
Liquidchromatography
(B)MASSSPECTROSCOPYTECHNIQUE
GaschromatographyMassspectroscopy
Inductivelycoupledplasma
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 78
CHEMICAL COMPOSITION TECHNIQUE AND TESTS

(C)SPECTROSCOPYTECHNIQUE
Fourier-transforminfraredspectroscopy
X-ray–EDS&XRFanalysis
Inductivelycoupledplasma(ICP-AES)
Atomicabsorptiongraphitefurnace(GF-AAS)
Sparkatomicemissions(Spark-AES)
(D)WETCHEMISTRYTECHNIQUE
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 79
CHEMICAL COMPOSITION TECHNIQUE AND TESTS

80
CHEMICAL COMPOSITION TECHNIQUE AND TESTS
Chemical
Composition
Tests
Chromatography
Technique
Mass Spectroscopy
Technique
Spectroscopy
Technique
Wet Chemistry
Technique
1.Gas Chromatography
2.Ion Chromatography
3.Liquid Chromatography
1.Gas Chromatography Mass
Spectroscopy
2.Inductively Coupled Plasma
1.FTIR (Solution & Pellet)
2.X-ray –EDS & XRF analysis
3.Inductively Coupled Plasma
4.Atomic Absorption Graphic
Furnace
5.Spark Atomic Emissions
Types of chemical composition test@ S. Thirumalvalavan, AP/Mech, 5104 -AEC.

XRF(X-rayfluorescence)isanon-destructiveanalyticaltechniqueusedto
determinetheelementalcompositionofmaterials.
XRFanalyzersdeterminethechemistryofasamplebymeasuringthe
fluorescentX-rayemittedfromasamplewhenitisexcitedbyaprimaryX-ray
source.
Thephenomenoniswidelyusedforelementalanalysisandchemicalanalysis,
particularlyintheinvestigationofmetals,glass,ceramicsandbuildingmaterials,
andforresearchingeochemistry.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 81
X-RAY FLUORESCENCE

X-rayfluorescence(XRF)istheemissionofcharacteristic“secondary”(or
fluorescent)X-raysfromamaterialthathasbeenexcitedbybeingbombarded
withhigh-energyX-raysorgammarays.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 82
X-RAY FLUORESCENCE -PRINCIPLE

SourceofX-raysusedtoirradiatethesample.
Wavelengthsaretypicallyintherange0.01to10nm,whichisequivalentto
energiesof125keVto0.125keV.
DetectionequippedbyGas-filleddetectors,semiconductordetector,scintillation
detector,aphotographicplate.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 83
COMPONENTS OF A TYPICAL XRFSPECTROMETER

TheXRFspectroscopydiffersprimarilybydetectionandanalyzing.
(1)EnergyDispersiveXRF(Directandpolarizedexcitation)
(a)EnergyDispersiveX-rayfluorescencewithdirectexcitation
(b)EnergyDispersiveX-rayfluorescencewithpolarizedexcitation
(2)WavelengthDispersiveXRF
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 84
TYPES OF XRFSPECTROMETER

(a)EnergyDispersiveX-rayfluorescencewithdirectexcitation
Anenergydispersivedetectionsystemdirectlymeasuresthedifferent
energiesoftheemittedX-raysfromthesample.Bycountingandplottingthe
relativenumbersofX-raysateachenergyanXRFspectrumisgenerated.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 85

(b)EnergyDispersiveX-rayfluorescencewithpolarizedexcitation
Thedetectormustbeperpendiculartotheplanedeterminedbythetube,
targetandsample.ThemostimportanteffectisthatbydeflectingtheX-ray
radiationby90
o
,theradiationispolarizedandthespectralbackgroundinthe
spectrumisreduced.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 86

(2)WavelengthDispersiveX-rayfluorescence
TheX-raysaredirectedtoacrystal,whichdiffractstheX-raysindifferent
directionsaccordingtotheirwavelengths(energies).Onasequentialsystema
detectorisplacedatafixedposition,andthecrystalisrotatedsothatdifferent
wavelengthsarepickedupbythedetector.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 87

AsolidoraliquidsampleisirradiatedwithhighenergyX-raysfromacontrolled
X-raytube.
WhenanatominthesampleisstruckwithanX-rayofsufficientenergy,an
electronfromoneoftheatom’sinnerorbitalshellsisremoved.
Theatomregainsstability,fillingthevacancyleftintheinnerorbitalshellwith
anelectronfromoneoftheatom’shigherenergyorbitalshells.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 88
WORKINGOF X-RAY FLUORESCENCE

TheelectrondropstothelowerenergystatebyreleasingafluorescentX-rays.
TheenergyofthisX-raysisequaltothespecificdifferenceinenergybetween
twoquantumstatesoftheelectron.
ThemeasurementofthisenergyisthebasisofXRFanalysis.
Theintensityofeachcharacteristicradiationisdirectlyrelatedtotheamountof
eachelementinthematerial.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 89
WORKINGOF X-RAY FLUORESCENCE

•Itisamethodofelemental(metal&nonmetal)analysiswithatomicnumbergreater
than12.
•Quantitativeanalysiscanbecarriedoutbymeasuringtheintensityoffluorescenceat
thewavelengthcharacteristicsoftheelementbeingdetermined,especiallyapplicableto
mostoftheelementintheperiodictable.
•Researchinigneous,sedimentaryandmetamorphicpetrology,soilsurveys,mining(eg.,
measuringthegradeofore),cementproduction,ceramicandglassmanufacturing.
•Metallurgy(eg.,qualitycontrol)
•Environmentalstudies(eg.,analysesofparticulatematteronairfilters)
•Petroleumindustry(eg.,sulfurcontentofcrudeoilsandpetroleumproducts)
•Fieldanalysisingeologicalandenvironmentalstudies(usingportable,hand-heldXRF
spectrometers)
•Bulkchemicalanalysesofmajorelementsandtraceelements
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 90
APPLICATIONS

•Simple spectra analysis
•XRF is a versatile and rapid technique
•Easily analysis of the element among the same family elements
•It is non-destructive method of chemical analysis
•Important as in case of samples in limited amounts, or valuable or
irreplaceable
•It is precise and with skilled operations it is accurate
•Applicable to a wide variety of samples from powders to liquids
•It is convenient and economical to use
•Applicable over a wide range of concentrations.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 91
ADVANTAGES

•Itfairlyhighlimitsofdetectionwhencomparedtoothermethods
•Possibilityofmatrixeffects,althoughthesecanusuallybeaccountedfor
usingsoftware-basedcorrectionprocedures
•Itislimitedintheirabilitytopreciselyandaccuratelymeasuresthe
abundancesofelementswithatomicnumber<11inmostnaturalearth
materials.
•XRFanalysescannotdistinguishvariationsamongisotopesofanelement
•Instrumentationisfairlyexpensive
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 92
DISADVANTAGES

•ElementalAnalysisisaprocesswhereasampleofsomematerial(eg.Soil,waste
ordrinkingwater,bodilyfluids,minerals,chemicalcompounds)isanalyzedfor
itselementalandsometimesisotopiccomposition.
•Elementalanalysiscanbequalitative(determiningwhatelementsarepresent),
anditcanbequantitative(determininghowmuchofeacharepresent).
•Elementalanalysisfallswithintheambitofanalyticalchemistry,thesetof
instrumentsinvolvedindecipheringthechemicalnatureofourworld.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 93
ELEMENTAL ANALYSIS BY INDUCTIVELY COUPLED PLASMA

•CHNXanalysis
•Quantitativeanalysis
•Qualitativeanalysis
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 94
METHODS OF ELEMENTAL ANALYSIS

•Thedeterminationofthemassfractionsofcarbon,hydrogen,nitrogenand
heteroatoms(X)[halogens,sulfur]ofasample.
ThevariesCHNXanalysisare,
i)NMR(NuclearMagneticResonance)
ii)Massspectrometrychromatographic
iii)Combustionanalysis
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 95
1. CHNX analysis

•Quantitativeanalysisisthedeterminationofthemassofeachelementor
compoundpresent.Thequantitativeanalysisare,
i)Gravimeteryanalysis
ii)Opticalatomicspectroscopy(Flameatomicabsorption,Graphitefurnace
atomicabsorption,andInductivelycoupledplasmaatomicemission
spectroscopy)
iii)Neutronactivationanalysis
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 96
2. Quantitative analysis

•Toqualitativelydeterminewhichelementsexistsinasample
Massspectrometric(atomicspectroscopy)
Inductivelycoupledplasmamassspectrometry
X-rayfluorescence
Particle-inducedX-rayemission
X-rayphotoelectronspectroscopy
Augerelectronspectroscopy
Sodiumfusiontest
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 97
3. Qualitative analysis

•Theexcitationsourcemustdesolvate,atomize,andexcitetheanalyteatoms.
•Avarietyofexcitationsourcesareflame,arc/sparkandplasma.
PLASMA
•Plasmaisanelectricalconductinggaseousmixturecontainingsignificant
amountsofcationsandelectrons(netchargeapproacheszero)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 98
EXCITING SOURCE OF MASS AND EMISSION SPECTROMETRY

•Increasedatomization/excitation
•Widerrangeofelements
•Simultaneousmultielementalanalysis
•Widedynamicrange
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 99
Advantages of PLASMA

•Direct-currentplasma(DCP)–InaDCP,aDCcurrentpassingbetweentwo
electrodesheatstheplasmagas,againtypicallyargon,andproducesadischarge.
Themostcommonversionisthethree-electrodesystem.
•Microwave-inducedplasma(MIP)–AMIPisanelectrodelessdischarge
generatedinaglassorquartzcapillarydischargetube,ofteninresonantcavity.
•CapacitivelyCoupledMicrowavePlasmas(CMP)–ACMPisformedusinga
magnetrontoproducemicrowaveenergyat2.45GHz.
•Inductively-coupledplasma(ICP)
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 100
TYPES OF PLASMA

•AnInductivelycoupledplasma(ICP)orTransformercoupledplasma(TCP)isatypepf
plasmasourceinwhichtheenergyissuppliedbyelectriccurrentswhichare
producedbyelectromagneticinduction,thatisbytime-varyingmagneticfields.
•Themostcommonlyusedionsourceforplasmaspectrometry,theICPisproducedby
flowinganinertgas,typicallyargon,throughawater-cooledinductioncoilwhichhas
ahigh-frequencyfield(typically27MHz)runningthroughit.
•Aninductivelycoupledplasma(ICP)isaveryhightemperature(7000-8000K)
excitationsources.ICPsourcesareusedtoexciteatomsforatomic-emissions
spectroscopyandtoionizeatomsformassspectrometry.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 101
INDUCTIVELY-COUPLED PLASMA (ICP)

•InductivelycoupleddischargealsousesRFpowersupplylikecapacitivelycoupled
discharge.
•Aradiofrequency(RF)generator(typically1-5kW@27MHx)producesanoscillating
currentinaninductioncoilthatwrapsaroundthetubes.
•Foracommonlyusedcylindricalplasmachambershownbelow,antennaisusually
wrappedaroundtheelectricallyinsulatingchamberwall.
•RFgeneratordriveshighalternatingcurrentthroughcoilantenna,whichcreatesan
alternatingmagneticfieldwithintheplasmachamber.
•Oscillatingmagneticfieldwillgenerateanoscillatingelectricfieldintheplasmachamber.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 102
PRODUCTION OF PLASMA

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 103
PRODUCTION PROCESS OF PLASMA

•Eventually,theelectricfieldwillacceleratetheelectronsandgenerateplasma.
•Themagneticfieldinturnsetsupanoscillatingcurrentintheionsandelectronsof
thesupportgas(argon).Astheionsandelectronscollidewithotheratomsinthe
supportgas.
•Sincetheexcitationforceisdeliveredthroughmagneticfield,inductivelycoupled
dischargeisalsocalled“H-discharge”.
•Forsomeapplications,itisdescribedas“electrodelessdischarge”becausethereis
nocathodeoranoderequiredforinductivelycoupleddischarge.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 104
PRODUCTION OF PLASMA

•Hightemperature(7000-8000K)
•Highelectrondensity(1014-1016cm)
•Appreciabledegreeofionizationformanyelements
•Simultaneousmulti-elementcapability(over70elementsincludingPandS)
•Lowbackgroundemissionandrelativelylowchemicalinterference
•Highstabilityleadingtoexcellentaccuracyandprecision
•Excellentdetectionlimitsformostelements(0.1-100ngmL-1)
•Widelineardynamicrange(LDR)[fourtosixordersofmagnitude]
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 105
CHARACTERISTICS OPTICALLY COUPLED PLASMA

•OpticalEmissionSpectroscopyorOESanalysis,isarapidmethodfordetermining
theelementalcompositionofavarietyofmetalsandalloys.
BasedonexcitationsourceOpticalEmissionSpectroscopyisclassifiedas,
•InductivelyCoupledOpticalEmissionSpectroscopy
•GlowDischargeOpticalEmissionSpectrometry(GD-OES)orGlowDischargeMS
(GD-MS)
•ArcsparkOpticalEmissionSpectroscopy
•Flameemissionspectroscopy
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 106
OPTICAL EMISSION SPECTROSCOPY

•TheInductivelyCoupledOpticalEmissionSpectroscopy(ICP-OES)analysis
methoduseshigh-frequencyinductivelycoupledplasmaasthelightsource,and
isdealfortheelementanalysisofsamplesolutions.
107
INDUCTIVELY COUPLED OPTICAL EMISSION SPECTROSCOPY
https://www.slideshare.net/ThirumalValavan2/

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 108
Flow diagram of ICP-OES

PRINCIPLE
•Whenplasmaenergyisgiventoananalysissamplefromoutside,thecomponent
elements(atoms)isexcited.Whentheexcitedatomsreturntolowenergy
position,emissionrays(spectrumrays)arereleasedandtheemissionraysthat
correspondtothephotonwavelengtharemeasured.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 109
INDUCTIVELY COUPLED OPTICAL EMISSION SPECTROSCOPY

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 110
Components of ICP-OES

•Sampleintroduction
•Productionofemission
•Collectionanddetectionofemission
•Signalprocessingandinstrumentcontrol
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 111
CONSTRUCTION

A)Nebulizer
B)Pump
C)Spraychambers
D)Drains
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 112
1. Sample Introduction

A)Torches
B)RadioFrequencyGenerators
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 113
2. Production of Emission

A)TransferOptics
B)WavelengthDispersiveDevices
C)Detectors
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 114
3. Collection and Detection of Emission

A)SignalProcessing
B)Computerandprocessors
C)Software
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 115
4. Signal Processing and Instrument Control

•Thefirststepinananalysisistopreparethesamplesandstandardsfor
introductiontotheICP.
•Thisstepdependsonthephysicalandchemicalcharacteristicsofthesamples
andformsimpledilutiontoacomplexseriesofchemicalreactionsandother
preparationsteps.
•Thenextstepintheanalysisconcernsthesampleintroductionmethodand
hardwaretobeused.
•FormostICP-OESanalyses,thestandardsampleintroductionsystemprovided
withtheinstrumentwillbesufficient.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 116
Working of ICP-OES

•Ininductivelycoupledplasma-opticalemissionspectrometry,thesampleis
usuallytransportedintotheinstrumentasastreamofliquidsample.
•Insidetheinstrument,theliquidiscoveredintoanaerosolthroughaprocess
knownasnebulization.
•Thesampleaerosolisthentransportedtotheplasmawhereitisdesolvated,
vaporized,atomized,andexcitedand/orionizedbythesample.
•Theexcitedatomsandionsemittheircharacteristicradiationwhichiscollected
byadevicethatsortstheradiationbywavelength.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 117
Working of ICP-OES

•Theradiationisdetectedandturnedintoelectronicsignalsthatareconverted
intoconcentrationinformationfortheanalyst.
•Thenextstepinthedevelopmentofananalysismethodologyistoprogramthe
instrument,usingthecomputersoftwareprovidedwiththeinstrument,to
performthedatacollectionandprocessingsteps.
•Todothis,decisionsmustbemadeconcerningtheoperatingconditions,
wavelengthselection,instrumentcalibration,emissionmeasurement,andthe
actualsampleanalysis.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 118
Working of ICP-OES

•Extremelyhighsensitivity
•Almostfullelementalcoveragewithoutneedforspecificexcitationsources
•Linearrangeofseveralordersofmagnitude
•Veryaccuratequantificationatlowconcentrations
•Highsamplethroughoutenablingtheefficientanalysisoflargebatches
•ComplementaryanalysistotechniqueslikeXRF
•Largedynamiclinearrange
•Lowchemicalandmatrixinterferenceeffects
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 119
Advantage of ICP-OES

•Cumbersomesamplepreparation
•Theneedtogeneratecalibrationcurvesfromsamplesassimilarinallrespects
asthesamplesunderinvestigation
•Initialprogressisoftentimeconsumingandtedious
•Relativelylonganalysistimes
•Themethodisinherentlydestructive
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 120
Disadvantage of ICP-OES

•Traceanalysisofenvironmentalsoilandwatersamples
•Assessmentofmetaloresformassbalancesandprocesscontrol
•BoronandLithiainglasses
•Forensicanalysis
•Metalreleasetestingoftableware
•Determinationoftoxic,traceandmajorconstituentsincoalandslags
•AnalysisoflowalloysteelsforAs,B,Bi,Ce,La,P,SnandTa;High-precision
determinationofSiinsteels.
•Determinationofcontaminantsinhigh-purityAl.
•Analysisofsuperconductingmaterialsfortrace.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 121
APPLICATIONS

•Inductivelycoupledplasmamassspectrometry(ICP-MS)isaninstrumental
analyticaltechniquebasedontheuseofahightemperatureionizationsource
(ICP)coupledtoamassspectrometer.
•Itisanelementalanalysistechnologycapableofdetectingmostoftheperiodic
tableofelementsatmilligramstonanogramlevelsperliter.
•Itisusedinavarietyofindustriesincluding,butnotlimitedto,environmental
monitoring,geochemicalanalysis,metallurgy,pharmaceuticalanalysisand
clinicalresearch.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 122
INDUCTIVELY COUPLED PLASMA MASS SPECTROSCOPY

•Itisatypeofmassspectrometrythatusesaninductivelycoupledplasmato
ionizethesample.Itatomizesthesampleandcreatesatomicandsmall
polyatomicions,whicharethendetected.
•Itisknownandusedforitsabilitytodetectmetalsandseveralnon-metalsin
liquidsamplesatverylowconcentrations.
•Itcandetectdifferentisotopesofthesameelement,whichmakesitaversatile
toolinisotopiclabeling.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 123
INDUCTIVELY COUPLED PLASMA MASS SPECTROSCOPY
PRINCIPLE

•Thisinternalstandardconsistsprimarilyofdeionizedwater,withnitricor
hydrochloricacid,andIndiumand/orGallium.
•Dependingonthesampletype,usually5mLoftheinternalstandardisaddedtoa
testtubealongwith10-500microlitersofsample.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 124
INDUCTIVELY COUPLED PLASMA MASS SPECTROSCOPY
SAMPLE PREPARATION

•Peristalticpump
•Nebulizerandspraychamber
•Torch
•PlasmaIonizationSource
•InterfaceRegion(Skimmercone&Samplercone)
•IonFocusingRegion
•Massanalyzer(Massspectroscopy)
•SpectralInterferences
•CollisionReactionCell(CRC)
•IonDetectors
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 125
ICP-MS : COMPONENTS

•Tobeprocessesefficientlyintheplasma,samplesmustbeineithergasorvapor
(aerosol)form.
•So,whilegasescanbeanalyzeddirectlybytheplasma(eg.,whenseparatedby
gaschromatography),solidsandliquidshavetobeconvertedtoaerosolfrom
usingeitheranebulizer(forliquids)oranablationdevice(forsolids).
•Onlyasmallamountpartoftheionsproducedintheplasmafurtherpenetrateto
themass-spectrometerpart.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 126
WORKING OF ICP-MS

•Aftermassseparation,ionsmustbedetectedandamplifiedinorderto
determinetheirintensities.
•Electronmultipliersalsoknownassecondaryelectronmultiplier,orSEM
detector)candetectextremelysmallioncurrents,includingevensingleions,
comingfromthemassanalyzer.
•Theyoperateontheprincipleofsecondaryelectronemission,inwhichcharged
particleswithsufficientenergyincidentona“dynode”stimulatetheemissionof
electronsfromthesurface.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 127
WORKING OF ICP-MS

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 128
Working flow of ICP-MS

@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 129
Working flow of ICP-MS

•Pumptubinghasthetendencytostretch,whichchangestheamountof
samplebeingdeliveredtothenebulizer.
•Tipofthenebulizershouldnotgetblocked.
•Microscopicparticlescanbuildonthetipofthenebulizerwithoutthe
operatornoticing,whichovertime,cancausealossofsensitivity,imprecision,
andpoorlong-termstability.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 130
MAINTENANCE OF ICP-MS

•Drainofspraychambermustfunctionproperly.Malfunctioningorleaking
draincanproducechangesinthespraychamberbackpressure,producing
fluctuationsintheanalytesignal,resultinginerraticandimprecisedata.
•Staininganddiscolorationoftheoutertubeofthequartztorchbecauseof
heatandthecorrosivenessoftheliquidsamplecancauseelectricalarcing.
•Themostcommontypesofproblemsassociatedwiththeinterfaceare
blockingorcorrosionofthesamplercone&skimmercone.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 131
MAINTENANCE OF ICP-MS

•Simplemetalanalysisduringmetalbaseddrugdevelopment
•Impuritylimittests
•Metalspresentinactivepharmaceuticalingredients
•Monitoringmetabolitesofanadministereddrug
•Detectionofmetalimpuritiesfromleachablepackingmaterial
•Forelementalspeciation
•Pharmaceuticalwastewatermonitoring.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 132
Application of ICP-MS

•Quantitativeanalysisisthefundamentaltoolusedtodetermineanalyteconcentrations
inunknownsamples.
•Increasedsensitivelyandwidedynamicrange
•Extremelylowdetectionlimits
•Alargelinearrange
•Wideelementalcoverage
•Simplespectra
•Isotopicinformation
•Highthroughput&Productivity
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 133
Advantage of ICP-MS

•Thehighcapitalcostoftheinstrumentation
•Lowerprecisioncomparedwithatomicabsorptionsspectrometry(AAS)
•Thetotaldissolvedsaltsshouldbelessthan1000ppm
•Severematrixeffects
•Heavierelements,suchaslead,arewell-suitedforICP-MSanalysis,whereas
lighterelementsarepronetomoreinterference.
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC. 134
Disadvantage of ICP-MS

THANK YOU
135
©S.Thirumalvalavan, Assistant Professor,
Department of Mechanical Engineering,
E-Mail : [email protected]
@ S. Thirumalvalavan, AP/Mech, 5104 -AEC.
https://www.slideshare.net/ThirumalValavan2/