Power Electronics by Prof. M. Madhusudhan Rao 11
Three Phase Controlled
Rectifiers
Power Electronics by Prof. M. Madhusudhan Rao 22
3 Phase Controlled Rectifiers
•Operate from 3 phase ac supply voltage.
•They provide higher dc output voltage.
•Higher dc output power.
•Higher output voltage ripple frequency.
•Filtering requirements are simplified for
smoothing out load voltage and load current.
Power Electronics by Prof. M. Madhusudhan Rao 33
•Extensively used in high power variable speed
industrial dc drives.
•Three single phase half-wave converters can be
connected together to form a three phase half-
wave converter.
Power Electronics by Prof. M. Madhusudhan Rao 44
3-Phase
Half Wave Converter
(3-Pulse Converter)
with
RL Load
Continuous & Constant
Load Current Operation
Power Electronics by Prof. M. Madhusudhan Rao 55
Power Electronics by Prof. M. Madhusudhan Rao 66
Vector Diagram of
3 Phase Supply Voltages
V
A N
V
C N
V
B N
1 2 0
0
1 2 0
0
1 2 0
0 RN AN
YN BN
BN CN
v v
v v
v v
=
=
=
Power Electronics by Prof. M. Madhusudhan Rao 77
3 Phase Supply Voltage Equations
We deifine three line to neutral voltages
(3 phase voltages) as follows
Power Electronics by Prof. M. Madhusudhan Rao 88
( )
( )
( )
0
0
0
sin ;
Max. Phase Voltage
2
sin
3
sin 120
2
sin
3
sin 120
sin 240
RN an m
m
YN bn m
m
BN cn m
m
m
v v V t
V
v v V t
V t
v v V t
V t
V t
w
p
w
w
p
w
w
w
= =
=
æ ö
= = -
ç ¸
è ø
= -
æ ö
= = +
ç ¸
è ø
= +
= -
Power Electronics by Prof. M. Madhusudhan Rao 99
v
an
v
bn
v
cn
v
an
Power Electronics by Prof. M. Madhusudhan Rao 1010
i
o
=I
a
Constant Load
Current
I
a
I
a
Each thyristor conducts for 2p/3 (120
0
)
Power Electronics by Prof. M. Madhusudhan Rao 1111
To Derive an
Expression for the
Average Output Voltage of a
3-Phase Half Wave Converter
with RL Load
for Continuous Load Current
Power Electronics by Prof. M. Madhusudhan Rao 1212
( )
( )
( )
0
1
0
2
0
3
0
30
6
5
150
6
7
270
6
2
Each thytistor conducts for 120 or radians
3
T istriggeredat t
T istriggeredat t
T istriggeredat t
p
w a a
p
w a a
p
w a a
p
æ ö
= + = +
ç ¸
è ø
æ ö
= + = +
ç ¸
è ø
æ ö
= + = +
ç ¸
è ø
Power Electronics by Prof. M. Madhusudhan Rao 1313
()
5
6
6
If the reference phase voltage is
sin , the average or dc output
voltage for continuous load current is calculated
using the equation
3
sin .
2
RN an m
dc m
v v V t
V V td t
p
a
p
a
w
w w
p
+
+
= =
é ù
ê ú
=
ê ú
ê ú
ë û
ò
Power Electronics by Prof. M. Madhusudhan Rao 1414
()
( )
5
6
6
5
6
6
3
sin .
2
3
cos
2
3 5
cos cos
2 6 6
m
dc
m
dc
m
dc
V
V td t
V
V t
V
V
p
a
p
a
p
a
p
a
w w
p
w
p
p p
a a
p
+
+
+
+
é ù
ê ú
=
ê ú
ê ú
ë û
é ù
ê ú
= -
ê ú
ê ú
ë û
é ùæ ö æ ö
= - + + +
ç ¸ ç ¸ê ú
è ø è øë û
ò
Power Electronics by Prof. M. Madhusudhan Rao 1515
( )( )
() ()
() ()
( ) () ( ) ()
( ) ()
0 0
0
Note from the trigonometric relationship
cos cos .cos sin .sin
5 5
cos cos sin sin
6 63
2
co
cos 150 cos sin 150 sin
3
2 cos 30
s .cos sin sin
6 6
.cos
m
dc
m
dc
A
V
V
B A B A B
V
V
p p
a a
p p p
a
a
a
a
p a
+ = -
é ùæ ö æ ö
- +
ç ¸ ç ¸ê ú
è ø è ø
ê ú=
ê ú æ ö æ ö
+ -
ê ú ç ¸ ç ¸
è ø è øë
-
+
û
+
=
- ( ) ()
0
sin 30 sina
é ù
ê ú
ê ú
ë û
Power Electronics by Prof. M. Madhusudhan Rao 1616
( ) () ( ) ()
( ) () ( ) ()
( ) ( )
( ) ( )
( ) () ( ) ()
( ) () ( ) ()
0 0
0 0 0 0
0 0
0 0
0
0
0
0
0 0
Note: cos 1
cos 180 30 cos sin 180 30 sin
3
2 cos 30 .cos sin 30 sin
cos 30 cos sin 30 sin
3
2 cos 30 .cos sin 30 s
80 30 cos 30
sin 180 30 sin 30
in
m
dc
m
dc
V
V
V
V
a a
p a a
a a
p a a
- =
é ù- - + -
ê ú=
ê ú + -
ë û
é ù+ +
ê ú\ =
ê ú + -
ë
=
û
-
-
Power Electronics by Prof. M. Madhusudhan Rao 1717
( ) ()
()
() ()
()
03
2cos 30 cos
2
3 3
2 cos
2 2
3 3 3
3cos cos
2 2
3
cos
2
Where 3 Max. line to line supply voltage
m
dc
m
dc
m m
dc
Lm
dc
Lm m
V
V
V
V
V V
V
V
V
V V
a
p
a
p
a a
p p
a
p
é ù=
ë û
é ù
= ´ê ú
ë û
é ù= =
ë û
=
= =
Power Electronics by Prof. M. Madhusudhan Rao 1818
( )max
The maximum average or dc output voltage is
obtained at a delay angle 0 and is given by
3 3
2
Where is the peak phase voltage.
And the normalized average output voltage is
m
dmdc
m
d
dcn n
V
V V
V
V
V V
a
p
=
= =
= = cos
c
dm
V
a=
Power Electronics by Prof. M. Madhusudhan Rao 1919
( ) ()
( )
1
5
2
6
2 2
6
1
2
The rms value of output voltage is found by
using the equation
3
sin .
2
and we obtain
1 3
3 cos2
6 8
mO RMS
mO RMS
V V td t
V V
p
a
p
a
w w
p
a
p
+
+
é ù
ê ú
=
ê ú
ê ú
ë û
é ù
= +ê ú
ë û
ò
Power Electronics by Prof. M. Madhusudhan Rao 2020
3 Phase Half Wave
Controlled Rectifier Output Voltage
Waveforms For RL Load
at
Different Trigger Angles
Power Electronics by Prof. M. Madhusudhan Rao 2121
0
0
3 0
0
3 0
0
6 0
0
6 0
0
9 0
0
9 0
0
1 2 0
0
1 2 0
0
1 5 0
0
1 5 0
0
1 8 0
0
1 8 0
0
2 1 0
0
2 1 0
0
2 4 0
0
2 4 0
0
2 7 0
0
2 7 0
0
3 0 0
0
3 0 0
0
3 3 0
0
3 3 0
0
3 6 0
0
3 6 0
0
3 9 0
0
3 9 0
0
4 2 0
0
4 2 0
0
V
a n
V
0
V
0
V
a n
a
a
a= 3 0
0
a= 6 0
0
V
b n
V
b n
V
c n
V
c n
wt
wt
a=30
0
a=60
0
Power Electronics by Prof. M. Madhusudhan Rao 2222
0
3 0
0
6 0
0
9 0
0
1 2 0
0
1 5 0
0
1 8 0
0
2 1 0
0
2 4 0
0
2 7 0
0
3 0 0
0
3 3 0
0
3 6 0
0
3 9 0
0
4 2 0
0
V
0
V
a n
a
a= 9 0
0
V
b n V
c n
wt
a=90
0
Power Electronics by Prof. M. Madhusudhan Rao 2323
3 Phase Half Wave
Controlled Rectifier With
R Load
and
RL Load with FWD
Power Electronics by Prof. M. Madhusudhan Rao 2424
a a
b b
c c
R
V
0
L
R V
0
+
-
T
1
T
2
T
3
n n
T
1
T
2
T
3
Power Electronics by Prof. M. Madhusudhan Rao 2525
3 Phase Half Wave
Controlled Rectifier Output Voltage
Waveforms For R Load
or RL Load with FWD
at
Different Trigger Angles
Power Electronics by Prof. M. Madhusudhan Rao 2626
0
0
3 0
0
3 0
0
6 0
0
6 0
0
9 0
0
9 0
0
1 2 0
0
1 2 0
0
1 5 0
0
1 5 0
0
1 8 0
0
1 8 0
0
2 1 0
0
2 1 0
0
2 4 0
0
2 4 0
0
2 7 0
0
2 7 0
0
3 0 0
0
3 0 0
0
3 3 0
0
3 3 0
0
3 6 0
0
3 6 0
0
3 9 0
0
3 9 0
0
4 2 0
0
4 2 0
0
V
s
V
0
V
a n
a
a= 0
a= 1 5
0
V
b n V
c n
wt
V
a n
V
b n V
c n
wt
a=0
0
a=15
0
Power Electronics by Prof. M. Madhusudhan Rao 2727
0
0
3 0
0
3 0
0
6 0
0
6 0
0
9 0
0
9 0
0
1 2 0
0
1 2 0
0
1 5 0
0
1 5 0
0
1 8 0
0
1 8 0
0
2 1 0
0
2 1 0
0
2 4 0
0
2 4 0
0
2 7 0
0
2 7 0
0
3 0 0
0
3 0 0
0
3 3 0
0
3 3 0
0
3 6 0
0
3 6 0
0
3 9 0
0
3 9 0
0
4 2 0
0
4 2 0
0
a
a
V
0
a= 3 0
0
V
a n
V
b n V
c n
wt
V
0
a= 6 0
0
V
a n
V
b n V
c n
wt
a=30
0
a=60
0
Power Electronics by Prof. M. Madhusudhan Rao 2828
To Derive An
Expression For The Average Or
Dc Output Voltage Of A
3 Phase Half Wave Converter With
Resistive Load
Or
RL Load With FWD
Power Electronics by Prof. M. Madhusudhan Rao 2929
( )
( )
( )
( )
( )
0
1
0 0
1
0
2
0 0
2
0
30
6
30 180 ;
sin
5
150
6
150 300 ;
sin 120
O an m
O bn m
T istriggeredat t
T conductsfrom to
v v V t
T istriggeredat t
T conductsfrom to
v v V t
p
w a a
a
w
p
w a a
a
w
æ ö
= + = +
ç ¸
è ø
+
= =
æ ö
= + = +
ç ¸
è ø
+
= = -
Power Electronics by Prof. M. Madhusudhan Rao 3030
( )
( )
( )
( )
0
3
0 0
3
0
0
7
270
6
270 420 ;
sin 240
sin 120
O cn m
m
T istriggeredat t
T conductsfrom to
v v V t
V t
p
w a a
a
w
w
æ ö
= + = +
ç ¸
è ø
+
= = -
= +
Power Electronics by Prof. M. Madhusudhan Rao 3131
()
( ) ( )
()
()
0
0
0
0
0
0
180
30
0 0
180
30
180
30
3
.
2
sin ; for 30 to 180
3
sin .
2
3
sin .
2
dc O
O an m
dc m
m
dc
V v d t
v v V t t
V V td t
V
V td t
a
a
a
w
p
w w a
w w
p
w w
p
+
+
+
é ù
=ê ú
ê úë û
= = = +
é ù
=ê ú
ê úë û
é ù
= ê ú
ê úë û
ò
ò
ò
Power Electronics by Prof. M. Madhusudhan Rao 3232
( )
( )
0
0
180
30
0 0
0
0
3
cos
2
3
cos180 cos 30
2
cos180 1, we get
3
1 cos 30
2
m
dc
m
dc
m
dc
V
V t
V
V
V
V
a
w
p
a
p
a
p
+
é ù
= -ê ú
ê úë û
é ù= - + +
ë û
=-
é ù= + +
ë û
Q
Power Electronics by Prof. M. Madhusudhan Rao 3333
Three Phase Semiconverters
•3 Phase semiconverters are used in Industrial
dc drive applications upto 120kW power
output.
•Single quadrant operation is possible.
•Power factor decreases as the delay angle
increases.
•Power factor is better than that of 3 phase half
wave converter.
Power Electronics by Prof. M. Madhusudhan Rao 3434
3 Phase
Half Controlled Bridge Converter
(Semi Converter)
with Highly Inductive Load &
Continuous Ripple free Load Current
Power Electronics by Prof. M. Madhusudhan Rao 3535
Power Electronics by Prof. M. Madhusudhan Rao 3636
Wave forms of 3 Phase Semiconverter
for
a > 60
0
Power Electronics by Prof. M. Madhusudhan Rao 3737
Power Electronics by Prof. M. Madhusudhan Rao 3838
Power Electronics by Prof. M. Madhusudhan Rao 3939
0 0
1
3 phase semiconverter output ripple frequency of
output voltage is 3
The delay angle can be varied from 0 to
During the period
30 210
7
, thyristor T is forward biased
6 6
S
f
t
t
a p
w
p p
w
£ <
£ <
Power Electronics by Prof. M. Madhusudhan Rao 4040
1
1 1
If thyristor is triggered at ,
6
& conduct together and the line to line voltage
appears across the load.
7
At , becomes negative & FWD conducts.
6
The load current contin
ac
ac m
T t
T D
v
t v D
p
w a
p
w
æ ö
= +
ç ¸
è ø
=
1 1
ues to flow through FWD ;
and are turned off.
m
D
T D
Power Electronics by Prof. M. Madhusudhan Rao 4141
1
2
1 2
If FWD is not used the would continue to
conduct until the thyristor is triggered at
5
, and Free wheeling action would
6
be accomplished through & .
If the delay angle , e
3
m
D T
T
t
T D
p
w a
p
a
æ ö
= +
ç ¸
è ø
£ ach thyristor conducts
2
for and the FWD does not conduct.
3
m
D
p
Power Electronics by Prof. M. Madhusudhan Rao 4242
( )
( )
( )
0
0
0
We deifine three line neutral voltages
(3 phase voltages) as follows
sin ; Max. Phase Voltage
2
sin sin 120
3
2
sin sin 120
3
sin 240
RN an m m
YN bn m m
BN cn m m
m
v v V t V
v v V t V t
v v V t V t
V t
V
w
p
w w
p
w w
w
= = =
æ ö
= = - = -
ç ¸
è ø
æ ö
= = + = +
ç ¸
è ø
= -
is the peak phase voltage of a wye-connected source.
m
Power Electronics by Prof. M. Madhusudhan Rao 4343
( )
( )
( )
( )
3 sin
6
5
3 sin
6
3 sin
2
3 sin
6
RB ac an cn m
YR ba bn an m
BY cb cn bn m
RY ab an bn m
v v v v V t
v v v v V t
v v v v V t
v v v v V t
p
w
p
w
p
w
p
w
æ ö
= = - = -
ç ¸
è ø
æ ö
= = - = -
ç ¸
è ø
æ ö
= = - = +
ç ¸
è ø
æ ö
= = - = +
ç ¸
è ø
Power Electronics by Prof. M. Madhusudhan Rao 4444
Wave forms of 3 Phase Semiconverter
for
a £ 60
0
Power Electronics by Prof. M. Madhusudhan Rao 4545
Power Electronics by Prof. M. Madhusudhan Rao 4646
Power Electronics by Prof. M. Madhusudhan Rao 4747
Power Electronics by Prof. M. Madhusudhan Rao 4848
To derive an
Expression for the
Average Output Voltage
of 3 Phase Semiconverter
for a > p / 3
and Discontinuous Output Voltage
Power Electronics by Prof. M. Madhusudhan Rao 4949
()
()
7
6
6
7
6
6
For and discontinuous output voltage:
3
the Average output voltage is found from
3
.
2
3
3 sin
2 6
dc ac
dc m
V v d t
V V t d t
p
p
a
p
p
a
p
a
w
p
p
w w
p
+
+
³
é ù
ê ú=
ê ú
ë û
é ù
æ ö
ê ú= -
ç ¸
ê ú è ø
ë û
ò
ò
Power Electronics by Prof. M. Madhusudhan Rao 5050
( )
( )
( )max
3 3
1 cos
2
3
1 cos
2
3 Max. value of line-to-line supply voltage
The maximum average output voltage that occurs at
a delay angle of 0 is
3 3
m
dc
mL
dc
mL m
m
dmdc
V
V
V
V
V V
V
V V
a
p
a
p
a
p
= +
= +
= =
=
= =
Power Electronics by Prof. M. Madhusudhan Rao 5151
( )
( ) ()
1
7
2
6
2
6
The normalized average output voltage is
0.51 cos
The rms output voltage is found from
3
.
2
dc
n
dm
acO rms
V
V
V
V v d t
p
p
a
a
w
p
+
= = +
é ù
ê ú=
ê ú
ë û
ò
Power Electronics by Prof. M. Madhusudhan Rao 5252
( ) ()
( )
1
7
2
6
2 2
6
1
2
3
3 sin
2 6
3 sin2
3
4 2
mO rms
mO rms
V V t d t
V V
p
p
a
p
w w
p
a
p a
p
+
é ù
æ ö
ê ú= -
ç ¸
ê ú è ø
ë û
é ùæ ö
= - +
ç ¸ê ú
è øë û
ò
Power Electronics by Prof. M. Madhusudhan Rao 5353
Average or DC Output Voltage
of a
3-Phase Semiconverter
for a£p / 3,
and Continuous Output Voltage
Power Electronics by Prof. M. Madhusudhan Rao 5454
() ()
( )
5
62
6 2
For , and continuous output voltage
3
3
. .
2
3 3
1 cos
2
dc ab ac
m
dc
V v d t v d t
V
V
pp
a
p p
a
p
a
w w
p
a
p
+
+
£
é ù
ê ú= +
ê ú
ë û
= +
ò ò
Power Electronics by Prof. M. Madhusudhan Rao 5555
( )
( ) () ()
( )
1
5
2
62
2 2
6 2
1
2
2
0.51 cos
RMS value of o/p voltage is calculated by using
the equation
3
. .
2
3 2
3 3cos
4 3
dc
n
dm
ab acO rms
mO rms
V
V
V
V v d t v d t
V V
pp
a
p p
a
a
w w
p
p
a
p
+
+
= = +
é ù
ê ú= +
ê ú
ë û
é ùæ ö
= +
ç ¸ê ú
è øë û
ò ò
Power Electronics by Prof. M. Madhusudhan Rao 5656
Three Phase Full Converter
•3 Phase Fully Controlled Full Wave Bridge
Converter.
•Known as a 6-pulse converter.
•Used in industrial applications up to 120kW
output power.
•Two quadrant operation is possible.
Power Electronics by Prof. M. Madhusudhan Rao 5757
Power Electronics by Prof. M. Madhusudhan Rao 5858
Power Electronics by Prof. M. Madhusudhan Rao 5959
Power Electronics by Prof. M. Madhusudhan Rao 6060
•The thyristors are triggered at an interval of
p / 3.
•The frequency of output ripple voltage is 6f
S.
•T
1
is triggered at wt = (p/6 + a), T
6
is already
conducting when T
1
is turned ON.
•During the interval (p/6 + a) to (p/2 + a),
T
1
and T
6
conduct together & the output load
voltage is equal to v
ab = (v
an – v
bn)
Power Electronics by Prof. M. Madhusudhan Rao 6161
•T
2
is triggered at wt = (p/2 + a), T
6
turns off
naturally as it is reverse biased as soon as T
2
is
triggered.
•During the interval (p/2 + a) to (5p/6 + a), T
1
and T
2
conduct together & the output load
voltage v
O
= v
ac
= (v
an
– v
cn
)
•Thyristors are numbered in the order in which
they are triggered.
•The thyristor triggering sequence is 12, 23,
34, 45, 56, 61, 12, 23, 34, ………
Power Electronics by Prof. M. Madhusudhan Rao 6262
( )
( )
( )
0
0
0
We deifine three line neutral voltages
(3 phase voltages) as follows
sin ; Max. Phase Voltage
2
sin sin 120
3
2
sin sin 120
3
sin 240
RN an m m
YN bn m m
BN cn m m
m
v v V t V
v v V t V t
v v V t V t
V t
V
w
p
w w
p
w w
w
= = =
æ ö
= = - = -
ç ¸
è ø
æ ö
= = + = +
ç ¸
è ø
= -
is the peak phase voltage of a wye-connected source.
m
Power Electronics by Prof. M. Madhusudhan Rao 6363
( )
( )
( )
The corresponding line-to-line
supply voltages are
3 sin
6
3 sin
2
3 sin
2
RY ab an bn m
YB bc bn cn m
BR ca cn an m
v v v v V t
v v v v V t
v v v v V t
p
w
p
w
p
w
æ ö
= = - = +
ç ¸
è ø
æ ö
= = - = -
ç ¸
è ø
æ ö
= = - = +
ç ¸
è ø
Power Electronics by Prof. M. Madhusudhan Rao 6464
To Derive An Expression For The
Average Output Voltage Of
3-phase Full Converter
With Highly Inductive Load
Assuming Continuous And
Constant Load Current
Power Electronics by Prof. M. Madhusudhan Rao 6565
()
2
6
6
. ;
2
3 sin
6
dc OO dc
O ab m
V V v d t
v v V t
p
a
p
a
w
p
p
w
+
+
= =
æ ö
= = +
ç ¸
è ø
ò
The output load voltage consists of 6 voltage
pulses over a period of 2p radians, Hence the
average output voltage is calculated as
Power Electronics by Prof. M. Madhusudhan Rao 6666
( )
2
6
mL
max
3
3 sin .
6
3 3 3
cos cos
Where V 3 Max. line-to-line supply vo
The maximum average dc output voltage is
obtained for a delay angle
ltage
3 3
0,
3
dc m
m mL
dc
m
m m
dmdc
V V t d t
V V
V
V
V V
V V
p
a
p
a
p
w w
p
a a
p
a
p
p
+
+
æ ö
= +
ç ¸
è ø
= =
=
=
=
= = =
ò
L
p
Power Electronics by Prof. M. Madhusudhan Rao 6767
( ) ()
1
2
2
2
6
The normalized average dc output voltage is
cos
The rms value of the output voltage is found from
6
.
2
dc
dcn n
dm
OO rms
V
V V
V
V v d t
p
a
p
a
a
w
p
+
+
= = =
é ù
ê ú
=
ê ú
ê ú
ë û
ò
Power Electronics by Prof. M. Madhusudhan Rao 6868
( ) ()
( ) ()
( )
1
2
2
2
6
1
2
2
2 2
6
1
2
6
.
2
3
3 sin .
2 6
1 3 3
3 cos2
2 4
abO rms
mO rms
mO rms
V v d t
V V t d t
V V
p
a
p
a
p
a
p
a
w
p
p
w w
p
a
p
+
+
+
+
é ù
ê ú
=
ê ú
ê ú
ë û
é ù
æ öê ú
= +
ç ¸ê ú
è ø
ê ú
ë û
æ ö
= +ç ¸
ç ¸
è ø
ò
ò
Power Electronics by Prof. M. Madhusudhan Rao 6969
Three Phase Dual Converters
•For four quadrant operation in many industrial
variable speed dc drives , 3 phase dual
converters are used.
•Used for applications up to 2 mega watt output
power level.
•Dual converter consists of two 3 phase full
converters which are connected in parallel & in
opposite directions across a common load.
Power Electronics by Prof. M. Madhusudhan Rao 7070
Power Electronics by Prof. M. Madhusudhan Rao 7171
Power Electronics by Prof. M. Madhusudhan Rao 7272
Power Electronics by Prof. M. Madhusudhan Rao 7373
Outputs of Converters 1 & 2
•During the interval (p/6 + a
1
) to (p/2 + a
1
), the
line to line voltage v
ab
appears across the output
of converter 1 and v
bc
appears across the output
of converter 2
Power Electronics by Prof. M. Madhusudhan Rao 7474
( )
( )
( )
0
0
0
We deifine three line neutral voltages
(3 phase voltages) as follows
sin ;
Max. Phase Voltage
2
sin sin 120
3
2
sin sin 120
3
sin 240
RN an m
m
YN bn m m
BN cn m m
m
v v V t
V
v v V t V t
v v V t V t
V t
w
p
w w
p
w w
w
= =
=
æ ö
= = - = -
ç ¸
è ø
æ ö
= = + = +
ç ¸
è ø
= -
Power Electronics by Prof. M. Madhusudhan Rao 7575
( )
( )
( )
The corresponding line-to-line
supply voltages are
3 sin
6
3 sin
2
3 sin
2
RY ab an bn m
YB bc bn cn m
BR ca cn an m
v v v v V t
v v v v V t
v v v v V t
p
w
p
w
p
w
æ ö
= = - = +
ç ¸
è ø
æ ö
= = - = -
ç ¸
è ø
æ ö
= = - = +
ç ¸
è ø
Power Electronics by Prof. M. Madhusudhan Rao 7676
•If v
O1
and v
O2
are the output voltages of
converters 1 and 2 respectively, the
instantaneous voltage across the current
limiting inductor during the interval
(p/6 + a
1
) £ wt £ (p/2 + a
1
) is given by
To obtain an Expression for the
Circulating Current
Power Electronics by Prof. M. Madhusudhan Rao 7777
1 2
3 sin sin
6 2
3 cos
6
The circulating current can be calculated by
using the equation
r O O ab bc
r m
r m
v v v v v
v V t t
v V t
p p
w w
p
w
= + = -
é ùæ ö æ ö
= + - -
ç ¸ ç ¸ê ú
è ø è øë û
æ ö
= -
ç ¸
è ø
Power Electronics by Prof. M. Madhusudhan Rao 7878
() ()
() ()
()
( )
1
1
6
6
1
max
1
.
1
3 cos .
6
3
sin sin
6
3
t
r r
r
t
r m
r
m
r
r
m
r
r
i t v d t
L
i t V t d t
L
V
i t t
L
V
i
L
w
p
a
w
p
a
w
w
p
w w
w
p
w a
w
w
+
+
=
æ ö
= -
ç ¸
è ø
é ùæ ö
= - -
ç ¸ê ú
è øë û
=
ò
ò
Power Electronics by Prof. M. Madhusudhan Rao 7979
Four Quadrant Operation
Conv. 2
Inverting
a
2
> 90
0
Conv. 2
Rectifying
a
2
< 90
0
Conv. 1
Rectifying
a
1
< 90
0
Conv. 1
Inverting
a
1
> 90
0
Power Electronics by Prof. M. Madhusudhan Rao 8080
• There are two different modes of operation.
Circulating current free
(non circulating) mode of operation
Circulating current mode of operation
Power Electronics by Prof. M. Madhusudhan Rao 8181
Non Circulating
Current Mode Of Operation
•In this mode of operation only one converter is
switched on at a time
•When the converter 1 is switched on,
For a
1
< 90
0
the converter 1 operates in the
Rectification mode
V
dc is positive, I
dc is positive and hence the
average load power P
dc
is positive.
•Power flows from ac source to the load
Power Electronics by Prof. M. Madhusudhan Rao 8282
•When the converter 1 is on,
For a
1
> 90
0
the converter 1 operates in the
Inversion mode
V
dc
is negative, I
dc
is positive and the average
load power P
dc
is negative.
•Power flows from load circuit to ac source.
Power Electronics by Prof. M. Madhusudhan Rao 8383
•When the converter 2 is switched on,
For a
2
< 90
0
the converter 2 operates in the
Rectification mode
V
dc
is negative, I
dc
is negative and the average
load power P
dc
is positive.
•The output load voltage & load current reverse
when converter 2 is on.
•Power flows from ac source to the load
Power Electronics by Prof. M. Madhusudhan Rao 8484
•When the converter 2 is switched on,
For a
2
> 90
0
the converter 2 operates in the
Inversion mode
V
dc
is positive, I
dc
is negative and the average
load power P
dc
is negative.
•Power flows from load to the ac source.
•Energy is supplied from the load circuit to the
ac supply.
Power Electronics by Prof. M. Madhusudhan Rao 8585
Circulating Current
Mode Of Operation
•Both the converters are switched on at the
same time.
•One converter operates in the rectification
mode while the other operates in the inversion
mode.
•Trigger angles a
1
& a
2
are adjusted such that
(a
1
+ a
2
) = 180
0
Power Electronics by Prof. M. Madhusudhan Rao 8686
•When a
1
< 90
0
, converter 1 operates as a
controlled rectifier. a
2
is made greater than 90
0
and converter 2 operates as an Inverter.
•V
dc
is positive & I
dc
is positive and P
dc
is positive.
Power Electronics by Prof. M. Madhusudhan Rao 8787
•When a
2
< 90
0
, converter 2 operates as a
controlled rectifier. a
1
is made greater than 90
0
and converter 1 operates as an Inverter.
•V
dc
is negative & I
dc
is negative and P
dc
is
positive.