Time response second order

7,575 views 22 slides Aug 08, 2016
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

TIME RESPONSE OF SECOND ORDER SYSTEM


Slide Content

TIME RESPONSE
OF
SECOND ORDER SYSTEM
Email :[email protected]
URL: http://shasansaeed.yolasite.com/
1SYED HASAN SAEED

REFERENCE BOOKS:
1.AUTOMATICCONTROLSYSTEMKUO&GOLNARAGHI
2.CONTROLSYSTEMANANDKUMAR
3.AUTOMATICCONTROLSYSTEMS.HASANSAEED
SYED HASAN SAEED 2

SYED HASAN SAEED 3
Block diagram of second order system is shown in fig.
R(s) C(s)
_
+)2(
2
n
n
ss

 s
sR
sR
sssR
sC
A
sssR
sC
nn
n
nn
n
1
)(
)(
2)(
)(
)(
2)(
)(
22
2
22
2










For unit step input

SYED HASAN SAEED 422
22
2
2
)1(
2
.
1
)(
nn
nn
n
ss
sss
sC







Replace by)1()(
222
 
nn
s
Break the equation by partial fraction and put)1(
222
 
nd 1
)3(
)()(
.
1
2222
2





A
s
B
s
A
ss
dndn
n

 )2(
)1()(
.
1
)(
222
2





nn
n
ss
sC

SYED HASAN SAEED 5 
22
)(
dn
s 
Multiply equation (3) by and put)2()(
))((
)(
2
2
2
nnn
nd
dndn
dnn
dn
n
n
dn
ssB
sj
jj
j
B
j
B
s
B
js


















Equation (1) can be written as
SYED HASAN SAEED 6)4(
)(
.
)(
1
)(
)(
1
)(
2222
22















dn
d
d
n
dn
n
dn
nn
ss
s
s
sC
s
s
s
sC








Laplace Inverse of equation (4))5(sin.cos.1)( 








tetetc
d
t
d
n
d
t
nn




 2
1 
nd
Put

SYED HASAN SAEED 7 tt
e
tc
ttetc
dd
t
dd
t
n
n








sincos.1
1
1)(
sin.
1
cos1)(
2
2
2














 )sin(
1
1)(
1
tan
cos
sin1
2
2
2
















t
e
tc
d
t
n
Put

SYED HASAN SAEED 8)6(
1
tan)1(sin
1
1)(
2
12
2




















t
e
tc
n
t
n
Put the values of d
  &)7(
1
tan)1(sin
1
)(
)()()(
2
12
2





















t
e
te
tctrte
n
t
n
Error signal for the system
The steady state value of c(t)1)(

tcLimite
t
ss

Thereforeatsteadystatethereisnoerrorbetween
inputandoutput.
=naturalfrequencyofoscillationorundamped
naturalfrequency.
=dampedfrequencyofoscillation.
=dampingfactororactualdampingor
dampingcoefficient.
Forequation(A)twopoles(for )are
SYED HASAN SAEED 9n
 d
 n
 2
2
1
1




nn
nn
j
j 10

Depending upon the value of , there are four cases
UNDERDAMPED ( ): When the system has two
complex conjugate poles.
SYED HASAN SAEED 10 10

Fromequation(6):
Timeconstantis
Responsehavingdampedoscillationwithovershootand
undershoot.Thisresponseisknownasunder-damped
response.
SYED HASAN SAEED 11n
/1

UNDAMPED ( ): when the system has two
imaginary poles.
SYED HASAN SAEED 120

From equation (6)
Thus at the system will oscillate.
Thedampedfrequencyalwayslessthantheundamped
frequency()becauseof.Theresponseisshownin
fig.
SYED HASAN SAEED 13ttc
ttc
n
n



cos1)(
)2/sin(1)(
0



For n
 n
 

SYED HASAN SAEED 14
CRITICALLY DAMPED ( ): When the system has
two real and equal poles. Location of poles for
critically damped is shown in fig. 1

SYED HASAN SAEED 15)(
11
)(
)(
)(
2
.
1
)(
1
2
2
2
2
22
2
n
n
nn
n
n
n
nn
n
ssssss
ss
sC
sss
sC



















For
After partial
fraction
Take the inverse Laplace )8()1(1)(
1)(




tetc
etetc
n
t
t
n
t
n
nn





SYED HASAN SAEED 16
From equation (6) it is clear that is the actual
damping. For , actual damping = . This actual
damping is known as CRITICAL DAMPING.
The ratio of actual damping to the critical damping is
known as damping ratio . From equation (8) time
constant = . Response is shown in fig.n
 1 n
  n
/1

OVERDAMPED( ):whenthesystemhastworeal
anddistinctpoles.
SYED HASAN SAEED 171
Response of the
system

From equation (2)
SYED HASAN SAEED 18)9(
)1()(
.
1
)(
222
2





nn
n
ss
sC )1(
222

nd
Put )10(
)(
.
1
)(
22
2



dn
n
ss
sC


We get
Equation (10) can be written as)11(
))((
)(
2



dndn
n
sss
sC


After partial fraction of equation (11) we get
SYED HASAN SAEED 19
Put the value of d
   
  
)12(
112
1
112
11
)(
22
22





dn
dn
s
ss
sC

   
  
)13(
)1(112
1
)1(112
11
)(
222
222







nn
nn
s
ss
sC

Inverse Laplace of equation (13)
From equation (14) we get two time constants
SYED HASAN SAEED 20)14(
)1(12)1(12
1)(
22
)1(
22
)1(
22







 tt
nn
ee
tc n
n
T
T


)1(
1
)1(
1
2
2
2
1




SYED HASAN SAEED 21)15(
)1(12
1)(
22
)1(
2





 t
n
e
tc
Fromequation(14)itisclearthatwhenisgreaterthan
onetherearetwoexponentialterms,firsttermhastime
constantT
1andsecondtermhasatimeconstantT
2.T
1<
T
2.Inotherwordswecansaythatfirstexponentialterm
decayingmuchfasterthantheotherexponentialterm.
Sofortimeresponseweneglectit,then)16(
)1(
1
2
2 


n
T
 

THANK YOU
SYED HASAN SAEED 22
Tags