Topic 3 (3) Determinants.pdf determinants properties

shafiqahzakaria60 17 views 27 slides Oct 14, 2024
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

Properties of determinants


Slide Content

Determinants
Properties of determinants and Cramer’s
rule

ThislectureiscuratedbasedonNumerical
AnalysisbyAnton,HandKaul,A(2019).
ElementaryLinearAlgebra,12thed.Pleaserefer
tothetextbook(officialtextbook)forfull
details.
Thetopicsdiscussedinthislecturecanbefound
inSection2.3ofthetextbook.

In this section, we use determinants to:
•derive a formula for the inverse of an invertible matrix
•derive formulas for the solutions of certain kinds of linear
systems.

Let ?be an JHJmatrix.
Property 1:
@APG?LG
?
?.
Basic properties of determinants
Quick illustration:

Let ?be an JHJmatrix.
Property 1:
@APG?LG
?
?.
Property 2 (non-property):
@AP?E?M@AP?E@AP?.
Basic properties of determinants
Quick illustration:

Let ?be an JHJmatrix.
Property 1:
@APG?LG
?
?.
Property 2 (non-property):
@AP?E?M@AP?E@AP?.
Property 3:
@AP??L@AP?@AP?.
Basic properties of determinants
Quick illustration:

Let ?be an JHJmatrix.
Property 1:
@APG?LG
?
?.
Property 2 (non-property):
@AP?E?M@AP?E@AP?.
Property 3:
@AP??L@AP?@AP?.
Property 4:
If ?is invertible, @AP?
?5
Ls@AP?? .
Basic properties of determinants
Quick illustration/proof:
Since ?
?5
?L?
?
, it follows that
@AP?
?5
?L@AP?
?
Ls?
Also, from Property 3:
@AP?
?5
?L@AP?
?5
@AP?Ls?
Since @AP?Mr:@AP?
?5
Ls@AP?? .

Entries and Cofactors from Different Rows
Let
?L
utFs
sxu
tFvr
?
The cofactors of ?are:
%
55
L
%
56
L
%
57
L
%
65
L
%
66
L
%
67
L
%
75
L
%
76
L
%
77
L

Observation 1:
Cofactor expansion of @AP? along the first row is
@AP?L=
55
%
55
E=
56
%
56
E=
57
%
57
L u s tE t xEF s F s xL x v?
Cofactor expansion of @AP? along the first column is
@AP?L=
55
%
55
E=
65
%
65
E=
75
%
75
L u s tE s vE t s tL x v?
Entries and Cofactors from Different Rows
Let
?L
u tF s
s x u
tF v r
?
The cofactors of ?are:
%
55
L s t
%
56
L x
%
57
LF s x
%
65
L v
%
66
L t
%
67
L s x
%
75
L s t
%
76
LF s r
%
77
L s x

Observation 1:
Cofactor expansion of @AP? along the first row is
@AP?L=
55
%
55
E=
56
%
56
E=
57
%
57
L u s tE t xEF s F s xL x v?
Cofactor expansion of @AP? along the first column is
@AP?L=
55
%
55
E=
65
%
65
E=
75
%
75
L u s tE s vE t s tL x v?
Entries and Cofactors from Different Rows
Let
?L
u tF s
s x u
tF v r
?
The cofactors of ?are:
%
55
L s t
%
56
L x
%
57
LF s x
%
65
L v
%
66
L t
%
67
L s x
%
75
L s t
%
76
LF s r
%
77
L s x
Cofactor expansion along any rows or columns give the same
value which is @AP?

Observation 2:
Multiply the entries in the first row by the corresponding
cofactors from the second row and add the resulting
products
=
55
%
65
E=
56
%
66
E=
57
%
67
Lu vEt tEFs sxLr?
Multiply the entries in the first column by the
corresponding cofactors from the second column and
add the resulting products
=
55
%
56
E=
65
%
66
E=
75
%
76
Lu xEs tEt FsrLr?
Entries and Cofactors from Different Rows
Let
?L
utFs
sxu
tFvr
?
The cofactors of ?are:
%
55
Lst
%
56
Lx
%
57
LFsx
%
65
Lv
%
66
Lt
%
67
Lsx
%
75
Lst
%
76
LFsr
%
77
Lsx

Observation 2:
Multiply the entries in the first row by the corresponding
cofactors from the second row and add the resulting
products
=
55
%
65
E=
56
%
66
E=
57
%
67
Lu vEt tEFs sxLr?
Multiply the entries in the first column by the
corresponding cofactors from the second column and
add the resulting products
=
55
%
56
E=
65
%
66
E=
75
%
76
Lu xEs tEt FsrLr?
Entries and Cofactors from Different Rows
Let
?L
utFs
sxu
tFvr
?
The cofactors of ?are:
%
55
Lst
%
56
Lx
%
57
LFsx
%
65
Lv
%
66
Lt
%
67
Lsx
%
75
Lst
%
76
LFsr
%
77
Lsx
If the =’s and %
??
’s come from different rows/columns, the sum is zero.

Definition:
If ?L?
??
is an JHJmatrix, and %
??
is the cofactor of
=
??
, then the matrix
%
55
%
56
%
65
%
66
?%
5?
?%
6?
??
%
?5
%
?6
??
?%
??
?
is called the matrix of cofactors from ?.
The transpose of this matrix is called the adjoint of ?and
is denoted by =@F?.
Adjoint of a matrix

Definition:
If ?L?
??
is an JHJmatrix, and %
??
is the cofactor of
=
??
, then the matrix
%
55
%
56
%
65
%
66
?%
5?
?%
6?
??
%
?5
%
?6
??
?%
??
?
is called the matrix of cofactors from ?.
The transpose of this matrix is called the adjoint of ?and
is denoted by =@F?.
Adjoint of a matrix
Example:
Let
?L
utFs
sxu
tFvr
?
The cofactors of ?are:
%
55
Lst?%
56
Lx?%
57
LFsx?
%
65
Lv?%
66
Lt?%
67
Lsx?
%
75
Lst?%
76
LFsr?%
77
Lsx?
Matrix of cofactorsL ,
=@F?L .

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint
Proof:
Consider

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint
Proof:
Consider
?=@F?
??
L=
?5
%
?5
E=
?6
%
?6
E?E=
??
%
??
The entry of ?=@F?in the Ethrow and Fthcolumn:

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint
Proof:
Consider
?=@F?
??
L=
?5
%
?5
E=
?6
%
?6
E?E=
??
%
??
The entry of ?=@F?in the Ethrow and Fthcolumn:
RECALL:
Observation 1 --Cofactor expansion along any
rows or columns give the same value which is
@AP?
Observation 2 --If the =’s and %
??
’s come from
different rows/columns, the sum is zero.

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint
Proof:
Consider
?=@F?
??
L=
?5
%
?5
E=
?6
%
?6
E?E=
??
%
??
The entry of ?=@F?in the Ethrow and Fthcolumn:
RECALL:
Observation 1 --Cofactor expansion along any
rows or columns give the same value which is
@AP?
Observation 2 --If the =’s and %
??
’s come from
different rows/columns, the sum is zero.
If ELF:
If EMF:
?=@F?
??
L=
?5
%
?5
E=
?6
%
?6
E?E=
??
%
??
L@AP?
?=@F?
??
L=
?5
%
?5
E=
?6
%
?6
E?E=
??
%
??
Lr.

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint
Proof:
Consider
L
@AP? r
r@AP?
? r
??
? ?
r r
? r
?@AP?
L@AP??
?

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint
Proof:
Consider
L
@AP? r
r@AP?
? r
??
? ?
r r
? r
?@AP?
L@AP??
?
It follows that
?=@F?L@AP??
?
?
Multiply through by
5
????
?
?5
to give
?
?5
L
s
@AP?
=@F??

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint
Example:
Let
?L
utFs
sxu
tFvr
?
=@F?L
stvst
xtFsr
Fsxsxsx
.
?
?5
L
5
????
=@F?L
5
:8
stvst
xtFsr
Fsxsxsx
L
-.
20
0
20
-.
20
2
20
.
20
F
-,
20
F
-2
20
-2
20
-2
20
.

Theorem:
If ?is invertible, then
?
?5
L
s
@AP?
=@F??
Inverse of matrix using adjoint
Example:
Let
?L
utFs
sxu
tFvr
?
=@F?L
stvst
xtFsr
Fsxsxsx
.
?
?5
L
5
????
=@F?L
5
:8
stvst
xtFsr
Fsxsxsx
L
-.
20
0
20
-.
20
2
20
.
20
F
-,
20
F
-2
20
-2
20
-2
20
.
A WORD OF CAUTION:
Althoughitisnicetohaveaformulafor
theinverse,computingitaccuratelyvia
theformulacanbeachallenge,
especiallywhen@AP?Nr.

Theorem:
If ? Lis a system of Jlinear equations in J
unknowns such that @AP?Mr, then the system
has a unique solution. This solution is
T
5
L
@AP?
5
@AP?
?T
6
L
@AP?
6
@AP?
???T
?
L
@AP?
?
@AP?
?
where ?
?
is the matrix obtained by replacing the
entries in the Fthcolumn of ?by the entries of .
Cramer’s rule

Theorem:
If ? Lis a system of Jlinear equations in J
unknowns such that @AP?Mr, then the system
has a unique solution. This solution is
T
5
L
@AP?
5
@AP?
?T
6
L
@AP?
6
@AP?
???T
?
L
@AP?
?
@AP?
?
where ?
?
is the matrix obtained by replacing the
entries in the Fthcolumn of ?by the entries of .
Cramer’s rule
Example:

PleasegothroughExercisesSet2.3inthetext
booktogiveyouthepracticeyouneedto
enhanceyourunderstanding.
Youwillfindbriefsolutionstooddnumbered
questionsattheendofthetextbook.ONLY
REFERTOTHESOLUTIONSAFTERYOUHAVE
MADEATTEMPTSONTHEEXERCISES.
Tutorialquestionswillbepreparedbasedon
questionfromthoseexercises,butwillbe
presentedinexamformat.
Tags