1
Chapter 7
DC Biasing Circuits
Pictures are redrawn (with some modifications) from
Introductory Electronic Devices and Circuits
By
Robert T. Paynter
2
Objectives
•State the purpose of dc biasing circuits.
•Plot the dc load line given the value of V
CC
and
the total collector-emitter circuit resistance.
•Describe the Q-point of an amplifier.
•Describe and analyze the operations of various
bias circuits:
–base-bias circuits
–voltage-divider bias circuits
–emitter-bias circuits
–collector-feedback bias circuits
–emitter-feedback bias circuits
3
Fig 7.1 Typical amplifier operation.
R
B
R
C
Q
1
V
CC
V
B(ac)
I
B(ac)
V
CE(ac)
I
C(ac)
4
Fig 7.2 A generic dc load line.
I
C
V
CE
(sat)
CC
C
C
V
I
R
(off )CE CC
V V
CC CE
C
C
V V
I
R
5
Fig 7.3 Example 7.1.
R
B
R
C
2 k
Q
1
+12 V
V
CE
24681012
2
4
6
8
I
C
I
C(sat)
V
CE(off)
Plot the dc load line for the circuit
shown in Fig. 7.3a.
6
Fig 7.4 Example 7.2.
Plot the dc load line for the circuit shown in
Fig. 7.4. Then, find the values of V
CE
for I
C
=
1, 2, 5 mA respectively.
R
B
R
C
1 k
Q
1
+10 V
V
CE
246810
2
4
6
8
I
C
10
I
C
(mA) V
CE
(V)
1 9
2 8
5 5
CE CC C C
V V I R
7
Fig 7.6-8 Optimum Q-point with
amplifier operation.
β
C B
I I
CE CC C C
V V I R
V
CE
I
B
= 0 A
I
B
= 10 A
I
B
= 20 A
I
B
= 30 A
I
B
= 40 A
I
B
= 50 A
I
C
Q-Point
V
CC
V
CC
/2
I
C(sat)
I
C(sat)
/2
I
B
8
Fig 7.9 Base bias (fixed bias).
CC BE
B
B
V V
I
R
β
C B
I I
CE CC C C
V V I R
R
C
R
B
+0.7 V
I
C
I
B
I
E
Input
Output
V
BE
V
CC
Q
1
= dc current gain = h
FE
9
Fig 7.10 Example 7.3.
R
C
2 k
R
B
360 k
+0.7 V
I
C
I
B
I
E
V
BE
+8 V
h
FE
= 100
0.7V8V 0.7V
360kΩ
20.28μA
CC
B
B
V
I
R
100 20.28μA
2.028mA
C FE B
I h I
8V 2.028mA 2kΩ
3.94V
CE CC C C
V V I R
The circuit is midpoint biased.
10
Fig 7.11 Example 7.4.
Construct the dc load line for the circuit shown in Fig. 7.10,
and plot the Q-point from the values obtained in Example
7.3. Determine whether the circuit is midpoint biased.
V
CE
(V)
246810
1
2
3
4
I
C
(mA)
Q
(sat)
8V
4mA
2kΩ
CC
C
C
V
I
R
off
8V
CCCE
V V
11
Fig 7.12 Example 7.6. (Q-point shift.)
The transistor in Fig. 7.12 has values of h
FE = 100 when T =
25 °C and h
FE = 150 when T = 100 °C. Determine the Q-
point values of I
C
and V
CE
at both of these temperatures.
R
C
2 k
R
B
360 k
+0.7 V
I
C
I
B
I
E
V
BE
+8 V
h
FE
= 100 (T = 25C)
h
FE
= 150 (T = 100C)
Temp(°C) I
B
(A)I
C
(mA)V
CE
(V)
25 20.28 2.028 3.94
100 20.28 3.04 1.92
12
Fig 7.13 Base bias characteristics. (1)
R
C
R
B
+0.7 V
I
C
I
B
I
E
Input
Output
V
BE
V
CC
Q
1
Advantage: Circuit simplicity.
Disadvantage: Q-point shift with temp.
Applications: Switching circuits only.
Circuit recognition: A single resistor
(R
B) between the base terminal and V
CC.
No emitter resistor.
13
Fig 7.13 Base bias characteristics. (2)
R
C
R
B
+0.7 V
I
C
I
B
I
E
Input
Output
V
BE
V
CC
Q
1
(sat)
(off )
CC
C
C
CE CC
V
I
R
V V
Load line equations:
Q-point equations:
CC BE
B
B
C FE B
CE CC C C
V V
I
R
I h I
V V I R
14
Fig 7.14 Voltage divider bias. (1)
R
1
R
2 R
E
R
C
+V
CC
Input
Output
I
1
I
2 I
E
I
B
I
C
Assume that I
2
> 10I
B
.
2
1 2
B CC
R
V V
R R
0.7V
E B
V V
E
E
E
V
I
R
Assume that I
CQ I
E (or
h
FE
>> 1). Then
CEQ CC CQ C E
V V I R R
15
Fig 7.15 Example 7.7. (1)
Determine the values of I
CQ and V
CEQ for the circuit shown in Fig. 7.15.
R
1
18 k
R
2
4.7 k
R
E
1.1 k
R
C
3 k
+10 V
I
1
I
2
I
E
I
B
I
C
h
FE
= 50
2
1 2
4.7kΩ
10V 2.07V
22.7kΩ
B CC
R
V V
R R
0.7V
2.07V 0.7V 1.37V
E B
V V
Because I
CQ
I
E
(or h
FE
>> 1),
1.37V
1.25mA
1.1kΩ
E
CQ
E
V
I
R
10V 1.25mA 4.1kΩ 4.87V
CEQ CC CQ C E
V V I R R
16
Fig 7.15 Example 7.7. (2)
Verify that I
2 > 10 I
B.
R
1
18 k
R
2
4.7 k
R
E
1.1 k
R
C
3 k
+10 V
I
1
I
2
I
E
I
B
I
C
h
FE
= 50
2
2
2.07V
440.4μA
4.7kΩ
B
V
I
R
1.25mA
1 50+1
24.51μA
E
B
FE
I
I
h
2
10
B
I I
17
Which value of h
FE do I use?
Transistor specification sheet may list any
combination of the following h
FE
: max. h
FE
,
min. h
FE, or typ. h
FE. Use typical value if there
is one. Otherwise, use
(ave) (min) (max)FE FE FE
h h h
18
Example 7.9
A voltage-divider bias circuit has the following values:
R
1 = 1.5 k, R
2 = 680 , R
C = 260 , R
E = 240 and
V
CC
= 10 V. Assuming the transistor is a 2N3904,
determine the value of I
B
for the circuit.
2
1 2
680Ω
10V 3.12V
2180Ω
B CC
R
V V
R R
0.7V 3.12V 0.7V 2.42V
E B
V V
2.42V
10mA
240Ω
E
CQ E
E
V
I I
R
( ) (min) (max)
100 300 173
FE ave FE FE
h h h
(ave)
10mA
57.5μA
1 174
E
B
FE
I
I
h
19
Stability of Voltage Divider
Bias Circuit
The Q-point of voltage divider bias circuit is less
dependent on h
FE than that of the base bias (fixed
bias).
For example, if I
E
is exactly 10 mA, the range of h
FE
is
100 to 300. Then
10mA
At 100, 100 μA and 9.90mA
1 101
E
FE B CQ E B
FE
I
h I I I I
h
10mA
At 300, 33 μA and 9.97mA
1 301
E
FE B CQ E B
FE
I
h I I I I
h
I
CQ
hardly changes over the entire range of h
FE
.
20
Fig 7.18 Load line for voltage
divider bias circuit.
24681012
5
10
15
20
25
I
C
(mA)
V
CE
(V)
(sat)
10V
20mA
260Ω+240Ω
CC
C
C E
V
I
R R
(off )
10V
CE CC
V V
Circuit values are from
Example 7.9.
21
Fig 7.19-20 Base input resistance. (1)
R
1
R
2 R
E
R
C
V
CC
I
1
I
2
I
E
I
B
I
C
R
IN(base)
R
1
R
2
I
1
I
2
V
CC
0.7 V
I
B
R
IN(base)
( 1)
E E E B FE E
V I R I h R
(base)
( 1)
E
IN FE E
B
FE E
V
R h R
I
h R
May be ignored.
22
Fig 7.19-20 Base input resistance. (2)
I
B
R
1
R
2
I
1
I
2
V
CC
I
B
R
IN(base)
V
B
2 (base)
1 2 (base)
2
1 2
21
//
//
//
//
//
IN
B CC
IN
FE E
CC
FE E
EQ
CC
EQ FE EEQ
R R
V V
R R R
R h R
V
R R h R
R
V
R R h RR R
23
Fig 7.21 Example 7.11.
2
//
10kΩ// 50 1.1kΩ 8.46kΩ
EQ FE E
R R h R
1
8.46kΩ
20V 2.21V
68kΩ 8.46kΩ
EQ
B CC
EQ
R
V V
R R
0.7V
2.21V 0.7V
1.37mA
1.1kΩ
E B
CQ E
E E
V V
I I
R R
20V 1.37mA 7.3kΩ 9.99V
CEQ CC CQ C E
V V I R R
R
1
68k
R
2
10k
R
E
1.1k
R
C
6.2k
V
CC
=20V
I
1
I
2
I
E
I
C
h
FE
= 50
24
Fig 7.24 Voltage-divider bias
characteristics. (1)
R
1
R
2 R
E
R
C
+V
CC
Input
Output
I
1
I
2 I
E
I
B
I
C
Circuit recognition: The
voltage divider in the base
circuit.
Advantages: The circuit Q-
point values are stable
against changes in h
FE.
Disadvantages: Requires
more components than most
other biasing circuits.
Applications: Used primarily
to bias linear amplifier.
25
Fig 7.24 Voltage-divider bias
characteristics. (2)
R
1
R
2 R
E
R
C
+V
CC
Input
Output
I
1
I
2 I
E
I
B
I
C
Load line
equations:
(sat)
(off )
CC
C
C E
CE CC
V
I
R R
V V
Q-point equations (assume
that h
FER
E > 10R
2):
2
1 2
0.7V
B CC
E B
E
CQ E
E
CEQ CC CQ C E
R
V V
R R
V V
V
I I
R
V V I R R
27
Fig 7.25-6 Emitter bias.
Assume that the transistor
operation is in active region.
R
C
R
E
R
B
I
C
I
E
I
B
Q
1
Input
Output
+V
CC
-V
EE
0.7V
1
EE
B
B FE E
V
I
R h R
C FE B
I h I
1
E FE B
I h I
CE CC C C E E EE
V V I R I R V
Assume that h
FE >> 1.
CE CC C C E EE
V V I R R V
28
Fig 7.27 Example 7.12.
R
C
750
R
E
1.5k
R
B
100
I
C
I
E
I
B
Q
1
Input
Output
+12 V
-12 V
h
FE
= 200
Determine the
values of I
CQ and
V
CEQ for the
amplifier shown in
Fig.7.27.
12V 0.7V
( 1)
11.3V
37.47μA
100Ω+201 1.5kΩ
B
B FE E
I
R h R
200 37.47μA
7.49mA
CQ FE B
I h I
( )
24V 7.49mA 750Ω 1.5kΩ
7.14V
CEQ CC C C E EE
V V I R R V
29
Load Line for
Emitter-Bias Circuit
(sat)
( )
CC EE CC EE
C
C E C E
V V V V
I
R R R R
( )CE off CC EE CC EE
V V V V V
V
CE
I
C
I
C(sat)
V
CE(off)
30
Fig 7.28 Emitter-bias
characteristics. (1)
R
C
R
E
R
B
I
C
I
E
I
B
Q
1
Input
Output
+V
CC
-V
EE
Circuit recognition: A split (dual-
polairty) power supply and the base
resistor is connected to ground.
Advantage: The circuit Q-point
values are stable against changes in
h
FE.
Disadvantage: Requires the use of
dual-polarity power supply.
Applications: Used primarily to bias
linear amplifiers.
31
Fig 7.28 Emitter-bias
characteristics. (2)
R
C
R
E
R
B
I
C
I
E
I
B
Q
1
Input
Output
+V
CC
-V
EE
Load line equations:
(sat)
(off )
CC EE
C
C E
CE CC EE
V V
I
R R
V V V
Q-point equations:
1
BE EE
CQ FE
B FE E
CEQ CC CQ C E EE
V V
I h
R h R
V V I R R V
32
Fig 7.29 Collector-feedback
bias.
R
B
R
C
+V
CC
I
C
I
E
I
B
CC C B C B B BE
V I I R I R V
( 1)
CC BE
B
FE C B
V V
I
h R R
CQ FE B
I h I
1
CEQ CC FE B C
CC CQ C
V V h I R
V I R
33
Fig 7.30 Example 7.14.
Determine the values of I
CQ and V
CEQ for the
amplifier shown in Fig. 7.30.
R
B
R
C
1.5 k
+10 V
180 k
h
FE
= 100
1
10V 0.7V
28.05μA
180kΩ 101 1.5kΩ
CC BE
B
B FE C
V V
I
R h R
100 28.05μA
2.805mA
CQ FE B
I h I
( 1)
10V 101 28.05μA 1.5kΩ
5.75V
CEQ CC FE B C
V V h I R
34
Circuit Stability of
Collector-Feedback Bias
R
B
R
C
+V
CC
I
C
I
E
I
B
h
FE increases
I
C
increases (if I
B
is the same)
V
CE
decreases
I
B decreases
I
C
does not increase that much.
Good Stability. Less dependent
on h
FE and temperature.
35
Collector-Feedback
Characteristics (1)
R
B
R
C
+V
CC
I
C
I
E
I
B
Circuit recognition: The base
resistor is connected between
the base and the collector
terminals of the transistor.
Advantage: A simple circuit
with relatively stable Q-point.
Disadvantage: Relatively poor
ac characteristics.
Applications: Used primarily to
bias linear amplifiers.
36
Collector-Feedback
Characteristics (2)
R
B
R
C
+V
CC
I
C
I
E
I
B
Q-point relationships:
( 1)
CC BE
B
FE C B
V V
I
h R R
CQ FE B
I h I
CEQ CC CQ C
V V I R
37
Fig 7.31 Emitter-feedback bias.
R
B
R
C
+V
CC
R
E
I
B
I
E
I
C
1
CC BE
B
B FE E
V V
I
R h R
CQ FE B
I h I
CEQ CC C C E E
CC CQ C E
V V I R I R
V I R R
1
E FE B
I h I
38
Fig 7.32 Example 7.15.
R
B
680k
R
C
6.2k
+V
CC
R
E
1.6k
h
FE
= 50
16V 0.7V
1 680k Ω 51 1.6kΩ
20.09μA
CC BE
B
B FE E
V V
I
R h R
50 20.09μA 1mA
CQ FE B
I h I
16V 1mA 7.8kΩ 8.2V
CEQ CC CQ C E
V V I R R
39
Circuit Stability of
Emitter-Feedback Bias
h
FE increases
I
C
increases (if I
B
is the same)
V
E
increases
I
B decreases
I
C
does not increase that much.
I
C
is less dependent on h
FE
and
temperature.
R
B
R
C
+V
CC
R
E
I
B
I
E
I
C
40
Emitter-Feedback
Characteristics (1)
Circuit recognition: Similar to
voltage divider bias with R
2
missing (or base bias with R
E
added).
Advantage: A simple circuit
with relatively stable Q-point.
Disadvantage: Requires more
components than collector-
feedback bias.
Applications: Used primarily to
bias linear amplifiers.
R
B
R
C
+V
CC
R
E
I
B
I
E
I
C
41
Emitter-Feedback
Characteristics (2)
R
B
R
C
+V
CC
R
E
I
B
I
E
I
C
Q-point relationships:
( 1)
CC BE
B
B FE E
V V
I
R h R
CQ FE B
I h I
CEQ CC CQ C E
V V I R R
42
Summary
•DC Biasing and the dc load line
•Base bias circuits
•Voltage-divider bias circuits
•Emitter-bias circuits
•Feedback-bias circuits
–Collector-feedback bias circuits
–Emitter-feedback bias circuits