transistor biasing characteristic and modeling

MarwanAffandi3 13 views 42 slides Mar 02, 2025
Slide 1
Slide 1 of 42
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42

About This Presentation

transistor biasing


Slide Content

1
Chapter 7
DC Biasing Circuits
Pictures are redrawn (with some modifications) from
Introductory Electronic Devices and Circuits
By
Robert T. Paynter

2
Objectives
•State the purpose of dc biasing circuits.
•Plot the dc load line given the value of V
CC
and
the total collector-emitter circuit resistance.
•Describe the Q-point of an amplifier.
•Describe and analyze the operations of various
bias circuits:
–base-bias circuits
–voltage-divider bias circuits
–emitter-bias circuits
–collector-feedback bias circuits
–emitter-feedback bias circuits

3
Fig 7.1 Typical amplifier operation.
R
B
R
C
Q
1
V
CC
V
B(ac)
I
B(ac)
V
CE(ac)
I
C(ac)

4
Fig 7.2 A generic dc load line.
I
C
V
CE
(sat)
CC
C
C
V
I
R

(off )CE CC
V V
CC CE
C
C
V V
I
R

5
Fig 7.3 Example 7.1.
R
B
R
C
2 k
Q
1
+12 V
V
CE
24681012
2
4
6
8
I
C
I
C(sat)
V
CE(off)
Plot the dc load line for the circuit
shown in Fig. 7.3a.

6
Fig 7.4 Example 7.2.
Plot the dc load line for the circuit shown in
Fig. 7.4. Then, find the values of V
CE
for I
C
=
1, 2, 5 mA respectively.
R
B
R
C
1 k
Q
1
+10 V
V
CE
246810
2
4
6
8
I
C
10
I
C
(mA) V
CE
(V)
1 9
2 8
5 5
CE CC C C
V V I R 

7
Fig 7.6-8 Optimum Q-point with
amplifier operation.
β
C B
I I
CE CC C C
V V I R 
V
CE
I
B
= 0 A
I
B
= 10 A
I
B
= 20 A
I
B
= 30 A
I
B
= 40 A
I
B
= 50 A
I
C
Q-Point
V
CC
V
CC
/2
I
C(sat)
I
C(sat)
/2
I
B

8
Fig 7.9 Base bias (fixed bias).
CC BE
B
B
V V
I
R


β
C B
I I
CE CC C C
V V I R 
R
C
R
B
+0.7 V
I
C
I
B
I
E
Input
Output
V
BE
V
CC
Q
1
 = dc current gain = h
FE

9
Fig 7.10 Example 7.3.
R
C
2 k
R
B
360 k
+0.7 V
I
C
I
B
I
E
V
BE
+8 V
h
FE
= 100
0.7V8V 0.7V
360kΩ
20.28μA
CC
B
B
V
I
R
 
 

 100 20.28μA
2.028mA
C FE B
I h I 

 8V 2.028mA 2kΩ
3.94V
CE CC C C
V V I R 
 

The circuit is midpoint biased.

10
Fig 7.11 Example 7.4.
Construct the dc load line for the circuit shown in Fig. 7.10,
and plot the Q-point from the values obtained in Example
7.3. Determine whether the circuit is midpoint biased.
V
CE
(V)
246810
1
2
3
4
I
C
(mA)
Q
(sat)
8V
4mA
2kΩ
CC
C
C
V
I
R
  
off
8V
CCCE
V V 

11
Fig 7.12 Example 7.6. (Q-point shift.)
The transistor in Fig. 7.12 has values of h
FE = 100 when T =
25 °C and h
FE = 150 when T = 100 °C. Determine the Q-
point values of I
C
and V
CE
at both of these temperatures.
R
C
2 k
R
B
360 k
+0.7 V
I
C
I
B
I
E
V
BE
+8 V
h
FE
= 100 (T = 25C)
h
FE
= 150 (T = 100C)
Temp(°C) I
B
(A)I
C
(mA)V
CE
(V)
25 20.28 2.028 3.94
100 20.28 3.04 1.92

12
Fig 7.13 Base bias characteristics. (1)
R
C
R
B
+0.7 V
I
C
I
B
I
E
Input
Output
V
BE
V
CC
Q
1
Advantage: Circuit simplicity.
Disadvantage: Q-point shift with temp.
Applications: Switching circuits only.
Circuit recognition: A single resistor
(R
B) between the base terminal and V
CC.
No emitter resistor.

13
Fig 7.13 Base bias characteristics. (2)
R
C
R
B
+0.7 V
I
C
I
B
I
E
Input
Output
V
BE
V
CC
Q
1
(sat)
(off )
CC
C
C
CE CC
V
I
R
V V


Load line equations:
Q-point equations:
CC BE
B
B
C FE B
CE CC C C
V V
I
R
I h I
V V I R



 

14
Fig 7.14 Voltage divider bias. (1)
R
1
R
2 R
E
R
C
+V
CC
Input
Output
I
1
I
2 I
E
I
B
I
C
Assume that I
2
> 10I
B
.
2
1 2
B CC
R
V V
R R


0.7V
E B
V V 
E
E
E
V
I
R

Assume that I
CQ  I
E (or
h
FE
>> 1). Then
 
CEQ CC CQ C E
V V I R R  

15
Fig 7.15 Example 7.7. (1)
Determine the values of I
CQ and V
CEQ for the circuit shown in Fig. 7.15.
R
1
18 k
R
2
4.7 k
R
E
1.1 k
R
C
3 k
+10 V
I
1
I
2
I
E
I
B
I
C
h
FE
= 50

2
1 2
4.7kΩ
10V 2.07V
22.7kΩ
B CC
R
V V
R R


 
0.7V
2.07V 0.7V 1.37V
E B
V V 
  
Because I
CQ
 I
E
(or h
FE
>> 1),
1.37V
1.25mA
1.1kΩ
E
CQ
E
V
I
R
  
 
  10V 1.25mA 4.1kΩ 4.87V
CEQ CC CQ C E
V V I R R  
  

16
Fig 7.15 Example 7.7. (2)
Verify that I
2 > 10 I
B.
R
1
18 k
R
2
4.7 k
R
E
1.1 k
R
C
3 k
+10 V
I
1
I
2
I
E
I
B
I
C
h
FE
= 50
2
2
2.07V
440.4μA
4.7kΩ
B
V
I
R
  
1.25mA
1 50+1
24.51μA
E
B
FE
I
I
h
 


2
10
B
I I 

17
Which value of h
FE do I use?
Transistor specification sheet may list any
combination of the following h
FE
: max. h
FE
,
min. h
FE, or typ. h
FE. Use typical value if there
is one. Otherwise, use
(ave) (min) (max)FE FE FE
h h h 

18
Example 7.9
A voltage-divider bias circuit has the following values:
R
1 = 1.5 k, R
2 = 680 , R
C = 260 , R
E = 240  and
V
CC
= 10 V. Assuming the transistor is a 2N3904,
determine the value of I
B
for the circuit.

2
1 2
680Ω
10V 3.12V
2180Ω
B CC
R
V V
R R
  

0.7V 3.12V 0.7V 2.42V
E B
V V    
2.42V
10mA
240Ω
E
CQ E
E
V
I I
R
   
( ) (min) (max)
100 300 173
FE ave FE FE
h h h    
(ave)
10mA
57.5μA
1 174
E
B
FE
I
I
h
  

19
Stability of Voltage Divider
Bias Circuit
The Q-point of voltage divider bias circuit is less
dependent on h
FE than that of the base bias (fixed
bias).
For example, if I
E
is exactly 10 mA, the range of h
FE
is
100 to 300. Then
10mA
At 100, 100 μA and 9.90mA
1 101
E
FE B CQ E B
FE
I
h I I I I
h
      

10mA
At 300, 33 μA and 9.97mA
1 301
E
FE B CQ E B
FE
I
h I I I I
h
      

I
CQ
hardly changes over the entire range of h
FE
.

20
Fig 7.18 Load line for voltage
divider bias circuit.
24681012
5
10
15
20
25
I
C
(mA)
V
CE
(V)
(sat)
10V
20mA
260Ω+240Ω
CC
C
C E
V
I
R R
  

(off )
10V
CE CC
V V 
Circuit values are from
Example 7.9.

21
Fig 7.19-20 Base input resistance. (1)
R
1
R
2 R
E
R
C
V
CC
I
1
I
2
I
E
I
B
I
C
R
IN(base)
R
1
R
2
I
1
I
2
V
CC
0.7 V
I
B
R
IN(base)
( 1)
E E E B FE E
V I R I h R  
(base)
( 1)
E
IN FE E
B
FE E
V
R h R
I
h R
  

May be ignored.

22
Fig 7.19-20 Base input resistance. (2)
I
B
R
1
R
2
I
1
I
2
V
CC
I
B
R
IN(base)
V
B
 
 
 
2 (base)
1 2 (base)
2
1 2
21
//
//
//
//
//
IN
B CC
IN
FE E
CC
FE E
EQ
CC
EQ FE EEQ
R R
V V
R R R
R h R
V
R R h R
R
V
R R h RR R







23
Fig 7.21 Example 7.11.
 
 
2
//
10kΩ// 50 1.1kΩ 8.46kΩ
EQ FE E
R R h R
  

1
8.46kΩ
20V 2.21V
68kΩ 8.46kΩ
EQ
B CC
EQ
R
V V
R R


 

0.7V
2.21V 0.7V
1.37mA
1.1kΩ
E B
CQ E
E E
V V
I I
R R

  

 
 
  20V 1.37mA 7.3kΩ 9.99V
CEQ CC CQ C E
V V I R R  
  
R
1
68k
R
2
10k
R
E
1.1k
R
C
6.2k
V
CC
=20V
I
1
I
2
I
E
I
C
h
FE
= 50

24
Fig 7.24 Voltage-divider bias
characteristics. (1)
R
1
R
2 R
E
R
C
+V
CC
Input
Output
I
1
I
2 I
E
I
B
I
C
Circuit recognition: The
voltage divider in the base
circuit.
Advantages: The circuit Q-
point values are stable
against changes in h
FE.
Disadvantages: Requires
more components than most
other biasing circuits.
Applications: Used primarily
to bias linear amplifier.

25
Fig 7.24 Voltage-divider bias
characteristics. (2)
R
1
R
2 R
E
R
C
+V
CC
Input
Output
I
1
I
2 I
E
I
B
I
C
Load line
equations:
(sat)
(off )
CC
C
C E
CE CC
V
I
R R
V V



Q-point equations (assume
that h
FER
E > 10R
2):
 
2
1 2
0.7V
B CC
E B
E
CQ E
E
CEQ CC CQ C E
R
V V
R R
V V
V
I I
R
V V I R R


 
 
  

26
Other Transistor Biasing
Circuits
•Emitter-bias circuits
•Feedback-bias circuits
–Collector-feedback bias
–Emitter-feedback bias

27
Fig 7.25-6 Emitter bias.
Assume that the transistor
operation is in active region.
R
C
R
E
R
B
I
C
I
E
I
B
Q
1
Input
Output
+V
CC
-V
EE
 
0.7V
1
EE
B
B FE E
V
I
R h R


 
C FE B
I h I
 1
E FE B
I h I 
CE CC C C E E EE
V V I R I R V   
Assume that h
FE >> 1.
 
CE CC C C E EE
V V I R R V   

28
Fig 7.27 Example 7.12.
R
C
750
R
E
1.5k
R
B
100
I
C
I
E
I
B
Q
1
Input
Output
+12 V
-12 V
h
FE
= 200
Determine the
values of I
CQ and
V
CEQ for the
amplifier shown in
Fig.7.27.
12V 0.7V
( 1)
11.3V
37.47μA
100Ω+201 1.5kΩ
B
B FE E
I
R h R


 
 

200 37.47μA
7.49mA
CQ FE B
I h I  

 
 
( )
24V 7.49mA 750Ω 1.5kΩ
7.14V
CEQ CC C C E EE
V V I R R V    
  

29
Load Line for
Emitter-Bias Circuit
(sat)
( )
CC EE CC EE
C
C E C E
V V V V
I
R R R R
  
 
 

( )CE off CC EE CC EE
V V V V V    
V
CE
I
C
I
C(sat)
V
CE(off)

30
Fig 7.28 Emitter-bias
characteristics. (1)
R
C
R
E
R
B
I
C
I
E
I
B
Q
1
Input
Output
+V
CC
-V
EE
Circuit recognition: A split (dual-
polairty) power supply and the base
resistor is connected to ground.
Advantage: The circuit Q-point
values are stable against changes in
h
FE.
Disadvantage: Requires the use of
dual-polarity power supply.
Applications: Used primarily to bias
linear amplifiers.

31
Fig 7.28 Emitter-bias
characteristics. (2)
R
C
R
E
R
B
I
C
I
E
I
B
Q
1
Input
Output
+V
CC
-V
EE
Load line equations:
(sat)
(off )
CC EE
C
C E
CE CC EE
V V
I
R R
V V V



 
Q-point equations:

 
 
1
BE EE
CQ FE
B FE E
CEQ CC CQ C E EE
V V
I h
R h R
V V I R R V
 

 
   

32
Fig 7.29 Collector-feedback
bias.
R
B
R
C
+V
CC
I
C
I
E
I
B
 
CC C B C B B BE
V I I R I R V   
( 1)
CC BE
B
FE C B
V V
I
h R R


 
CQ FE B
I h I
 1
CEQ CC FE B C
CC CQ C
V V h I R
V I R
  
 

33
Fig 7.30 Example 7.14.
Determine the values of I
CQ and V
CEQ for the
amplifier shown in Fig. 7.30.
R
B
R
C
1.5 k
+10 V
180 k
h
FE
= 100
 1
10V 0.7V
28.05μA
180kΩ 101 1.5kΩ
CC BE
B
B FE C
V V
I
R h R


 

 
 
100 28.05μA
2.805mA
CQ FE B
I h I  

( 1)
10V 101 28.05μA 1.5kΩ
5.75V
CEQ CC FE B C
V V h I R  
   

34
Circuit Stability of
Collector-Feedback Bias
R
B
R
C
+V
CC
I
C
I
E
I
B
h
FE increases
I
C
increases (if I
B
is the same)
V
CE
decreases
I
B decreases
I
C
does not increase that much.
Good Stability. Less dependent
on h
FE and temperature.

35
Collector-Feedback
Characteristics (1)
R
B
R
C
+V
CC
I
C
I
E
I
B
Circuit recognition: The base
resistor is connected between
the base and the collector
terminals of the transistor.
Advantage: A simple circuit
with relatively stable Q-point.
Disadvantage: Relatively poor
ac characteristics.
Applications: Used primarily to
bias linear amplifiers.

36
Collector-Feedback
Characteristics (2)
R
B
R
C
+V
CC
I
C
I
E
I
B
Q-point relationships:
( 1)
CC BE
B
FE C B
V V
I
h R R


 
CQ FE B
I h I
CEQ CC CQ C
V V I R 

37
Fig 7.31 Emitter-feedback bias.
R
B
R
C
+V
CC
R
E
I
B
I
E
I
C
 1
CC BE
B
B FE E
V V
I
R h R


 
CQ FE B
I h I
 
CEQ CC C C E E
CC CQ C E
V V I R I R
V I R R
  
  
 1
E FE B
I h I 

38
Fig 7.32 Example 7.15.
R
B
680k
R
C
6.2k
+V
CC
R
E
1.6k
h
FE
= 50
 
16V 0.7V
1 680k Ω 51 1.6kΩ
20.09μA
CC BE
B
B FE E
V V
I
R h R
 
 
   

50 20.09μA 1mA
CQ FE B
I h I   
 
 16V 1mA 7.8kΩ 8.2V
CEQ CC CQ C E
V V I R R  
  

39
Circuit Stability of
Emitter-Feedback Bias
h
FE increases
I
C
increases (if I
B
is the same)
V
E
increases
I
B decreases
I
C
does not increase that much.
I
C
is less dependent on h
FE
and
temperature.
R
B
R
C
+V
CC
R
E
I
B
I
E
I
C

40
Emitter-Feedback
Characteristics (1)
Circuit recognition: Similar to
voltage divider bias with R
2
missing (or base bias with R
E

added).
Advantage: A simple circuit
with relatively stable Q-point.
Disadvantage: Requires more
components than collector-
feedback bias.
Applications: Used primarily to
bias linear amplifiers.
R
B
R
C
+V
CC
R
E
I
B
I
E
I
C

41
Emitter-Feedback
Characteristics (2)
R
B
R
C
+V
CC
R
E
I
B
I
E
I
C
Q-point relationships:
( 1)
CC BE
B
B FE E
V V
I
R h R


 
CQ FE B
I h I
 
CEQ CC CQ C E
V V I R R  

42
Summary
•DC Biasing and the dc load line
•Base bias circuits
•Voltage-divider bias circuits
•Emitter-bias circuits
•Feedback-bias circuits
–Collector-feedback bias circuits
–Emitter-feedback bias circuits
Tags