transporation problem - stepping stone method

94,855 views 25 slides May 03, 2013
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

Transportation Problem - Optimal Solution using Stepping Stone Method


Slide Content

Transportation Problem - Stepping Stone Method - PAMANTASAN NG LUNGSOD NG MAYNILA GRADUATE SCHOOL OF ENGINEERING GEM 805 – OPTIMIZATION TECHNIQUES

Stepping Stone Method >>> This is a one of the methods used to determine optimality of an initial basic feasible solution (i.e. Northwest Corner Rule, Least Cost or Vogel’s Approximation) >>> The method is derived from the analogy of crossing a pond using stepping stones. This means that the entire transportation table is assumed to be a pond and the occupied cells are the stones needed to make certain movements within the pond.

Optimum Solution: Stepping-Stone Method SOURCES DESTINATIONS 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Z = 4x10+6x30+6x50+7x10+5x10+8x40 = 960 Transportation Table

1. Starting at an unused/empty cell, trace a closed path or loop back to the original cell via cells that are currently being used and/or occupied. Note: A closed path or loop is a sequence of cells in the transportation table such that the first cell is unused/empty and all the other cells are used/occupied with the following conditions: Each pair of consecutive used/occupied cells lies in either the same row or column No three consecutive used/occupied cells lie in the same row or column The first and last cells of a sequence lies in the same row or column No cell appears more than once in a sequence (i.e. no duplication) Only horizontal and vertical moves allowed and can only change directions at used/occupied cells Optimum Solution: Stepping-Stone Method

Example: 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method A3->B3->B4->C4->C1->A1->A3 At Cell A3,

Example: 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method At Cell A4, A4->C4->C1->A1->A4

1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 Optimum Solution: Stepping-Stone Method B1->B4->C4->C1->B1 SOURCES DESTINATIONS Example: At Cell B1,

Example: 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method At Cell B2, B2->B4->C4->C1->A1->A2->B2

Example: 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method At Cell C2, C2->C1->A1->A2->C2

Example: 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method At Cell C3, C3->B3->B4->C4->C3

2. For every traced path or loop, begin with a plus (+) sign at the starting unused cell and alternately place a minus (-) and plus (+) sign at each used cell 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS - - - + + + Example: Optimum Solution: Stepping-Stone Method At Cell A3, A3->B3->B4->C4->C1->A1->A3

3. Calculate an Improvement Index by first adding the unit-cost figures found in each cell containing a plus sign and subtracting the unit costs in each square containing a minus sign. 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS - - - + + + Example: At Cell A3, A3->B3->B4->C4->C1->A1->A3 Optimum Solution: Stepping-Stone Method I A3 = 2 -8 -6 +7 +5 -4 = 8

Optimum Solution: Stepping-Stone Method Iteration #1 - Computing for the Improvement Index: At A3, A3->B3->B4->C4->C1->A1; I A3 = +8-6+7-8+5-4 = 2 At A4, A4->C4->C1->A1; I A4 = +8-8+5-4 = 1 At B1, B1->B4->C4->C1; I B1 = +6-7-8-5 = 2 At B2, B2->B4->C4->C1->A1->A2; I B2 = +8-7+8-5+4-6 = 2 At C2, Loop C2->C1->A1->A2; I C2 = +7-5+4-6 = 0 At C3, C3->B3->B4->C4; I C3 = +6-6+7-8 = -1 4. If all indices calculated are greater than or equal to zero, then, an optimal solution had been reached. If not, select the path/loop that has the most negative value and use this to further improve the solution. Note: Should there be two or more “most” negative values, select arbitrarily.

Example: At Cell C3, C3->B3->B4->C4 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method + + - - I C3 = +6-6+7-8 = -1

To further improve the current solution, select the “smallest” number found in the path/loop C3->B3->B4->C4 containing minus(-) signs. This number is added to all cells on the closed path/loop with plus(+) signs and subtracted from all cells on the path assigned with minus(-) signs. Optimum Solution: Stepping-Stone Method 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               50     10   C 5     7     6     8     50   10                 40   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS + + - - 40 50 - 40 10 + 40 40 - 40

5. Then, we have a new basic feasible solution… 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               10     50   C 5     7     6     8     50   10             40       DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method …and repeat steps 1 though 4 to calculate an Improvement Index for all unused squares in order to test whether an optimal solution has been reached.

Optimum Solution: Stepping-Stone Method Iteration #2 - Computing for the Improvement Index: At A3, A3->C3->C1->A1; I A3 = +8-6+5-4 = 3 At A4, A4->B4->B3->C3->C1->A1; I A4 = +8-7+6-6+5-4 = 2 At B1, B1->B3->C3->C1; I B1 = +6-6+6-5 = 1 At B2, B2->B3->C3->C1->A1->A2; I B2 = +8-6+6-5+4-6 = 1 At C2, C2->C1->A1->A2; I C2 = +7-5+4-6 = 0 At C4, C3->B3->B4; I C3 = +8-6+6-7 = 1 Since the results of all indices calculated are greater than or equal to zero, then, an optimal solution had been reached.

…and computing the objective function Z: 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               10     50   C 5     7     6     8     50   10             40       DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method Z = 4x10+6x30+6x10+7x50+5x10+6x40 = 920

In Iteration #2 : At A3, A3->C3->C1->A1; I A3 = +8-6+5-4 = 3 At A4, A4->B4->B3->C3->C1->A1; I A4 = +8-7+6-6+5-4 = 2 At B1, B1->B3->C3->C1; I B1 = +6-6+6-5 = 1 At B2, B2->B3->C3->C1->A1->A2; I B2 = +8-6+6-5+4-6 = 1 At C2, C2->C1->A1->A2; I C2 = +7-5+4-6 = 0 At C4, C3->B3->B4; I C3 = +8-6+6-7 = 1 Optimum Solution: Stepping-Stone Method However, in checking the calculation in Iteration #2, there is an improvement index equal to zero . This means that there is an ALTERNATE optimum solution:

To calculate for the alternate optimum solution, again select the “smallest” number found in this path/loop containing minus(-) signs. This number is added to all cells on the closed path/loop with plus(+) signs and subtracted from all cells on the path assigned with minus(-) signs. Optimum Solution: Stepping-Stone Method 1 2 3 4 SUPPLY A 4     6     8     8     40   10     30               B 6     8     6     7     60               10     50   C 5     7     6     8     50   10             40     DEMAND 20 30 50 50 150 SOURCES DESTINATIONS + + - - 10 30 - 10 10 + 10 10 - 10 Hence, at C2->C1->A1->A2,

Then the alternate optimum solution with objective function Z: 1 2 3 4 SUPPLY A 4     6     8     8     40   20     20               B 6     8     6     7     60               10     50   C 5     7     6     8     50         10       40       DEMAND 20 30 50 50 150 SOURCES DESTINATIONS Optimum Solution: Stepping-Stone Method Z = 4x20+6x20+6x10+7x50+7x10+6x40 = 920

1 2 3 4 SUPPLY A 4     6     8     8     40   20     20               B 6     8     6     7     60          10     50       C 5     7     6     8     50                   50   DEMAND 20 30 50 50 150 SOURCES DESTINATIONS When the number of empty/occupied cells in any solution (either initial or later) of the transportation table is not equal to the number of rows plus the number of columns minus 1 (i.e. m+n-1 ) the solution is called DEGENERATE Optimum Solution: Stepping-Stone Method Example: m + n -1 = 3 + 4 -1 = 6 DEGENERACY

DEGENERACY To handle degenerate problems, artificially create an occupied cell by placing a zero (representing a fake shipment) in one of the unused cells. Treating this cell as if it were occupied, it must be chosen in such a position as to allow all stepping-stone paths to be traced. Then, all stepping-stone paths can be closed and improvement indices computed. Optimum Solution: Stepping-Stone Method 1 2 3 4 SUPPLY A 4     6     8     8     40   20     20               B 6     8     6     7     60          10     50       C 5     7     6     8     50                   50   DEMAND 20 30 50 50 150 SOURCES Example: DESTINATIONS

QUESTIONS? Optimum Solution: Stepping-Stone Method

DIOS MABALOS PO! Cam on ! Shukriya ! ありがとうございます! Thank you! Merci! Gracias! Obrigado! 謝謝!