Trigonometric graphs

ShaunWilson10 2,975 views 33 slides Feb 18, 2016
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

Trig Graphs


Slide Content

Block 3
Trigonometric Graphs

What is to be learned?
•A reminder of how to draw and identify trig
graphs.
•Take it a bit further.

90 180 270 360
1
0
-1
Y = sinx
Maximum Value = 1
Minimum Value = -1

90 180 270 360
1
0
-1
Y = cosx
Maximum Value = 1
Minimum Value = -1

90 180 270 360
7
0
-7
Y = 7sinx
Maximum Value = 7
Minimum Value = -7
Range = Max - Min
Range = 7 – (-7)
= 14
→range = 14
Range

90 180 270 360
4
0
-4
Y = 4cosx
Maximum Value = 4
Minimum Value = -4
→range = 8

90 180 270 360
8
0
-8
Y = - 8sinx
Maximum Value = 8
Minimum Value = -8
“Opposite” to Sin x

90 180 270 360
6
0
-6
Y = - 6cosx
Maximum Value = 6
Minimum Value = -6
“Opposite” to Cos x

90
0
180
0
270
0
360
0
90
0
180
0
270
0
360
0
3
-3
6
-6
Write the Equations
1.
2.
y = -3sinx y = -6cosx
y = 9sinx y = cosx
3.
4.
9
-9
1
-1
90
0
180
0
270
0
360
0
90
0
180
0
270
0
360
0

90 180 270 360
1
0
-1
Y = sin x
540450
Period of graph is 360
0
Cycle starts again
Also applies to Y = cos x
Between 0
0
and 360
0
there is 1 cycle
Taking it Further

90 180 270 360
1
0
-1
Y = sin 2x
Period of graph is 180
0
There are 2 cycles between 0
0
and 360
0

Combining these rules
Draw y = 6sin2x
Max 6
Min -6
2 cycles
Period = 360 ÷ 2 = 180
0
90 180 270 360
6
0
-6
Y = 6sin 2x

Recognising Graph
Max 8
Min -8
4 cycles
90 180 270 360
8
0
-8
Y = 8cos4x
Cosine

90
0
180
0
270
0
360
0 90
0
180
0
270
0
360
0
90
0
180
0
270
0
360
0 90
0
180
0
270
0
360
0
7
-7
5
-5
3
- 3
2
-2
Write the Equations
1.
2.
3. 4.
y = 7sin2x y = 5cos2x
y = 3cos4x y = 2sin3x

Changing the Scale
Nice for Drawing Graphs 
y = 4 Sin 6x
Cycles?
Period
6
360 ÷ 6 = 60
0
15 30 45 60
4
0
-4

30
0
60
0
90
0
120
0
7
0
-7
Not so nice for recognising graphs 
Period = 120
0
No of Cycles in 360?360 ÷ 120 = 3
y = 7 cos 3x
240
0
360
0

Find equation of graph below.
Cycles
Max 7
Negative sin
360 ÷ 60 = 6
15 30 45 60
7
0
-7
y = -7sin6x

Remember rules for y = (x – 3 )
2
+ 5
Same rules for trig graphs!
3 units to right Up 5
Extra Trig Graph Rules

90 180 270 360
4
0
-4
Y = 4cos (x – 45
0
)
450
Y = 4cosx
45
0
to right
Sketch Normal Graph
Move each point
right/left
y =4cos(x – 45
0
)

90 180 270 360
11
0
-11
Recognising
Sin Graph
30
0
to right
y = 11 sin(x – 30
0
)
30
0

90 180 270 360
13
0
-13
Recognising
Cos Graph
20
0
to left
y = 13 cos(x + 20
0
)
-20
0

90 180 270 360
11
0
-11
A Bit of Confusion
Sin Graph
30
0
to left
y = 11 sin(x + 30
0
)
-30
0
60
0
Cos Graph
60
0
to right
y = 11 cos(x – 60
0
)
Both correct

6
-6
y = 6cos(x + 30
0
)
-30
0
Identify this graph
90
0
180
0
270
0
360
0

90 180 270 360
1
0
-1
Y = sinx + 2
Y = sinx
2
3

90 180 270 360
4
0
-4
Y = 4cosx + 6
8
12
range = 8
Graph Type
y = 4cosx
2
6
10
-2
Equation?

90 180 270 360
0
No Maximum (or minimum)
What about y = Tanx ???
Goes to infinity
Cycle complete
Period is 180
0

90 180 270 360
0
Changing the period
Cycle complete
Normal Period is 180
0
2 cycles
y = tan2x

90 180 270 360
0
y = -Tanx

Also
Can now use radians!

90 180 270 360
1
0
-1
Y = sinx
π
/
2
π

/
2 2π

Trigonometric Graphs
Follow all the same rules as other function
graphs.
Range is handy for identifying (max – min)
e.g. for y = 7sinx →range = 14

π
/
2
π 2π
2
0
-2
y = 2cos(x –
π
/
4
)
4
6
y = 2cosx
Sketch y = 2cos(x –
π
/
4
) + 1
y = 2cos(x –
π
/
4
)

+ 1

/
2

0
-2
-4
Sketch y = 3sin(x +
π
/
4) – 1
Y = 3sinx
2
4
Y = 3sin(x +
π
/
4
)
Y = 3sin(x +
π
/
4
) – 1
Key Question


/

π
/
2
Tags