Topics
Transformation of Angles
Compound Angles
Definition and Domain and Range
of Trigonometric Function
Measurement of Angles
Measurement of Angles
O A
B
OA InitialRay-
uuur
OB Terminal Ray-
uuur
Angle is considered as the figure obtained by
rotating initial ray about its end point.
J001
Measure and Sign of an Angle
Measure of an Angle :-
Amount of rotation from initial side
to terminal side.
Sign of an Angle :-
O A
B
q
Rotation anticlockwise –
Angle positive
B’
-q
Rotation clockwise –
Angle negative
J001
Right Angle
O
Y
X
Revolving ray describes one – quarter of a circle then
we say that measure of angle is right angle
J001
Angle < Right angle Þ Acute Angle
Angle > Right angle Þ Obtuse Angle
Quadrants
O
Y
Y’
X’ X
II Quadrant
( , )- +
I Quadrant
( , )+ +
IV Quadrant
( , )+ -
III Quadrant
( , )- -
X’OX – x - axis
Y’OY – y - axis
J001
System of Measurement of Angle
Measurement of Angle
Sexagesimal System
or
British System
Centesimal System
or
French System
Circular System
or
Radian Measure
J001
System of Measurement of Angles
Sexagesimal System (British System)
1 right angle = 90 degrees (=90
o
)
1 degree = 60 minutes (=60’)
1 minute = 60 seconds (=60”)
Centesimal System (French System)
1 right angle = 100 grades (=100
g
)
1 grade = 100 minutes (=100’)
1 minute = 100 Seconds (=100”)
J001
Is 1 minute of
sexagesimal
1 minute of
centesimal ?
=
NO
System of Measurement of Angle
Circular System
J001
O
r
r
r
A
B
1
c
If OA = OB = arc AB
c
Then AOB 1radian( 1 )Ð = =
System of Measurement of Angle
Circular System
O A
C
B
1
c
AOC arcAC
AOB arcACB
Ð
=
Ð
Q
1radian r
2rightangles r
Þ =
p
2rightangles radianÞ =p
J001
180 radianÞ = p
o
Relation Between Degree Grade
And Radian Measure of An Angle
0 g
D G 2C
90 100
= =
p
OR
0 g
D G C
180 200
= =
p
J002
Illustrative Problem
Find the grade and radian measures
of the angle 5
o
37’30”
Solution
o' o
30 30 1
30"
60 60 60 120
æ öæ ö æ ö
= = =
ç ¸ ç ¸ç ¸
´è ø è øè ø
o
37
and37'
60
æ ö
=
ç ¸
è ø
o o
o 37 1 45
5 37'30" 5
60 120 8
æ ö æ ö
\ = + + =
ç ¸ ç ¸
è ø è ø
J002
We know that
D G 2C
90 100
= =
p
Illustrative Problem
Find the grade and radian measures of the
angle 5
o
37’30”
g
10
G D
9
æ ö
Þ = ´
ç ¸
è ø
( )
g g
g10 45 225
12.5 Ans
9 8 18
æ ö æ ö
= ´ = =
ç ¸ ç ¸
è ø è ø
c
and R D
180
pæ ö
= ´
ç ¸
è ø
c
45
radian Ans
180 8 32
p pæ ö
= ´ =
ç ¸
è ø
Solution
J002
Relation Between Angle Subtended
by an Arc At The Center of Circle
O A
C
1
c
q
B
Arc AC = r and Arc ACB =
AOC arcAC
AOB arcACB
Ð
=
Ð
Q
J002
1radian r
Þ =
q l
r
Þ q=
l
Illustrative Problem
A horse is tied to a post by a rope. If
the horse moves along a circular path
always keeping the rope tight and
describes 88 meters when it has traced
out 72
o
at the center. Find the length of
rope. [ Take p = 22/7 approx.].
Solution
P A
B
72
o
Arc AB = 88 m and AP = ?
c
o 2
72 72 rad
180 5
p pæ ö
q= = ´ =
ç ¸
è ø
J002
arcAB
r AP
q= =
l
Q
2 88 22
AP 70m [ approx.]
5 AP 7
p
= Þ = p=
Definition of Trigonometric Ratios
J003
2 2
r x y= +
x
O
Y
X
P (x,y)
M
q
y
r
y
sin
r
x
cos
r
y
tan
x
q=
q =
q=
x
cot
y
r
sec
x
r
cosec
y
q=
q =
q=
Some Basic Identities
sin cosec 1 ; n ,n I· q´ q= q ¹ p Î
2 2
sin cos 1· q+ q =
2 2
sec tan 1· q- q =
2 2
cosec cot 1· q- q =
( )
sin
tan ; 2n 1 ,n I
cos 2
q p
· q = q ¹ + Î
q
( )tan cot 1 ; 2n 1 ; n ,n I
2
p
· q´ q= q ¹ + q ¹ p Î
cos
cot ; n ,n I
sin
q
· q = q ¹ p Î
q
( )cos sec 1 ; 2n 1 ,n I
2
p
· q´ q= q ¹ + Î
Signs of Trigonometric Function In
All Quadrants
In First Quadrant
x
O
Y
X
P (x,y)
M
q
y
r
Here x >0, y>0,
2 2
r x y= + >0
y
sin 0
r
q = >
x
cos 0
r
q = >
y
tan 0
x
q = >
x
cot 0
y
q = >
r
sec 0
x
q = >
r
cosec 0
y
q = >
J004
Signs of Trigonometric Function In
All Quadrants
In Second Quadrant
Here x <0, y>0,
2 2
r x y= + >0
y
sin 0
r
q = >
r
cosec 0
y
q = >
q
XX’
Y
Y’
P (x,y)
x
y
r
x
cos 0
r
q = <
y
tan 0
x
q = <
x
cot 0
y
q = <
r
sec 0
x
q = <
J004
Signs of Trigonometric Function In
All Quadrants
In Third Quadrant
Here x <0, y<0,
2 2
r x y= + >0
r
cosec 0
y
q = >
r
sec 0
x
q = <
q
X’ X
P (x,y)
O
Y’
Y
M
y
sin 0
r
q = <
x
cos 0
r
q = <
y
tan 0
x
q = >
x
cot 0
y
q = >
J004
Signs of Trigonometric Function In
All Quadrants
In Fourth Quadrant
Here x >0, y<0,
2 2
r x y= + >0
y
sin 0
r
q = <
q
XO
P (x,y)
Y’
M
x
cos 0
r
q = >
y
tan 0
x
q = <
x
cot 0
y
q = <
r
sec 0
x
q = >
r
cosec 0
y
q = <
J004
Signs of Trigonometric Function In
All Quadrants
I Quadrant
All Positive
II Quadrant
sin & cosec
are Positive
III Quadrant
tan & cot are
Positive
IV Quadrant
cos & sec are
Positive
X
Y’
X’
Y
O
J004
ASTC :- All Sin Tan Cos
Illustrative Problem
q lies in secondIf cot q =
12
,
5
-
quadrant, find the values of
other five trigonometric function
Solution
12 5
cot tan
5 12
q = - Þ q = -Q
2 2 2 169
sec 1 tan sec
144
q = + q Þ q =Q
( )
13 13
sec sec liesinsecondquadrant
12 12
Þ q = ± Þ q = - q
12
Whichgivescos
13
q = -
13
cosec
5
\ q =
J004
Method : 1
5 12 5
Thensin tan cos
12 13 13
q = q´ q = - ´- =
Illustrative Problem
q lies in secondIf cot q =
12
,
5
-
quadrant, find the values of other five
trigonometric function
Solution
J004
Method : 2
Y
q
XX’
Y’
P (-12,5)
-12
5
r
Here x = -12, y = 5 and r = 13
y 5
sin
r 13
q = =
x 12
cos
r 13
-
q = =
y 5
tan
x 12
q = =
-
r 13
sec
x 12
q = =
-
r 13
cosec
y 5
q = =
Functions Domain Range
sinq R [-1,1]
cosq R
[-1,1]
secq
R : (2n 1)
2
pì ü
- q q = +í ý
î þ
R-(-1,1)
cosecq { }R : n- q q = p R-(-1,1)
tanq R : (2n 1)
2
pì ü
- q q = +í ý
î þ
R
cotq
{ }R : n- q q = p R
Domain and Range of Trigonometric
Function
J005
Illustrative problem
Prove that
2
2 (x y)
sin
4xy
+
q =
is possible for real values of x and
y only when x=y
Solution
( )
2
2(x y)
1 x y 4xy
4xy
+
Þ £ Þ + £
2
sin 1q £Q
( ) ( )
2 2
x y 4xy 0 x y 0Þ + - £ Þ - £
But for real values of x and y
( )
2
x y- is not less than zero
( )
2
x y 0 x y Proved\ - = Þ =
J005
Trigonometric Function For Allied
Angles
Trig. ratio-q 90
o
-q90
o
+q180
o
-q180
o
+q360
o
-q360
o
+q
cosq cosqsinq- sinq- cosq - cosqcosq cosq
tanq - tanqcotq- cotq-tanq tanq- tanqtanq
sinq - sinqcosqcosq sinq - sinq- sinqsinq
If angle is multiple of 90
0
then
sin Û cos;tan Û cot; sec Û cosec
If angle is multiple of 180
0
then
sin Û sin;cos Û cos; tan Û tan etc.
Trigonometric Function For Allied
Angles
Trig. ratio-q 90
o
-q90
o
+q180
o
-q180
o
+q360
o
-q360
o
+q
secq secqcosecq- cosecq- secq - secqsecq secq
cosecq- cosecqsecq secqcosecq-cosecq- cosecqcosecq
cotq - cotqtanq-tanq -cotq cotq- cotqcotq
Periodicity of Trigonometric
Function
Periodicity : After certain value of
x the functional values repeats
itself
Period of basic trigonometric functions
sin (360
o
+q) = sinq Þ period of sinq is 360
o
or 2p
cos (360
o
+q) = cosq Þ period of cosq is 360
o
or 2p
tan (180
o
+q) = tanq Þ period of tanq is 180
o
or p
J005
If f(x+T) = f(x) " x,then T is called
period of f(x) if T is the smallest
possible positive number
Trigonometric Ratio of Compound
Angle
Angles of the form of A+B, A-B,
A+B+C, A-B+C etc. are called
compound angles
(I) The Addition Formula
· sin (A+B) = sinAcosB + cosAsinB
· cos (A+B) = cosAcosB - sinAsinB
( )
tanA tanB
tan A B
1 tanAtanB
+
· + =
-
J006
( )
sin(A B)
Proof: tan A B
cos(A B)
+
- + =
+
Q
sinAcosB cosAsinB
cosAcosB sinAsinB
+
=
-
Trigonometric Ratio of Compound
Angle
J006
sinAcosB cosAsinB
cosAcosB sinAsinB
+
=
-
r r
Dividing N and D bycosAcosB
We get
tanA tanB
1 tanAtanB
+
=
-
Proved
( )
cotBcotA 1
cot A B
cotB cotA
-
· + =
+
Illustrative problem
Find the value of
(i) sin 75
o
(ii) tan 105
o
Solution
(i) Sin 75
o
= sin (45
o
+ 30
o
)
= sin 45
o
cos 30
o
+ cos 45
o
sin 30
o
1 3 1 1 3 1
2 22 2 2 2
+
= ´ + ´ =
( )(ii) Ans: 2 3- +
Trigonometric Ratio of
Compound Angle
(I) The Difference Formula
· sin (A - B) = sinAcosB - cosAsinB
· cos (A - B) = cosAcosB + sinAsinB
( )
tanA tanB
tan A B
1 tanAtanB
-
· - =
+
Note :- by replacing B to -B in addition
formula we get difference formula
( )
cotBcotA 1
cot A B
cotA cotB
+
· - = -
-
Illustrative problem
If tan (q+a) = a and tan (q - a) = b
Prove that
a b
tan2
1 ab
-
a =
-
Solution
( )( ){ }tan2 tana = q + a - q- a
( ) ( )
( ) ( )
tan tan
1 tan tan
q+ a - q -a
=
+ q + a q- a
a b
1 ab
-
=
+
Some Important Deductions
· sin (A+B) sin (A-B) = sin
2
A - sin
2
B = cos
2
B - cos
2
A
· cos (A+B) cos (A-B) = cos
2
A - sin
2
B = cos
2
B - sin
2
A
( )
tanA tanB tanC tanAtanBtanC
tan A B C
1 tanAtanB tanBtanC tanCtanA
+ + -
· + + =
- - -
To Express acosq + bsinq in the
form kcosf or lsiny
acosq +bsinq
2 2
2 2 2 2
a b
a b cos sin
a b a b
æ ö
= + q + qç ¸
+ +è ø
2 2 2 2
a b
Letcos ,thensin
a b a b
a = a =
+ +
( )
2 2
acos bsin a b cos cos sin sin\ q + q = + q a + q a
( )
2 2
a b cos= + q -a
Similarly we get acosq + bsinq = lsiny
2 2
kcos ,where k a b ,= f = + f = q- a
Illustrative problem
7cosq +24sinq
Find the maximum and minimum
values of 7cosq + 24sinq
Solution
2 2
2 2 2 2
7 24
7 24 cos sin
7 24 7 24
æ ö
= + q+ qç ¸
+ +è ø
7 24
25 cos sin
25 25
æ ö
= q + q
ç ¸
è ø
7 24
Letcos sin
25 25
a = Þ a =
( )7cos 24sin 25 cos cos sin sin\ q+ q = q a + q a
Illustrative problem
Find the maximum and minimum value of
7cosq + 24sinq
Solution
( )25cos 25cos where= q- a = f f = q- a
1 cos 1- £ f £Q
25 25cos 25Þ - £ f £
\ Max. value =25, Min. value = -25 Ans.
Transformation Formulae
· Transformation of product into sum
and difference
· 2 sinAcosB = sin(A+B) + sin(A - B)
· 2 cosAsinB = sin(A+B) - sin(A - B)
· 2 cosAcosB = cos(A+B) + cos(A - B)
Proof :- R.H.S = cos(A+B) + cos(A - B)
= cosAcosB - sinAsinB+cosAcosB+sinAsinB
= 2cosAcosB =L.H.S
· 2 sinAsinB = cos(A - B) - cos(A+B) [Note]
Transformation Formulae
· Transformation of sums or difference
into products
C D C D
sinC sinD 2sin cos
2 2
+ -
· + =
C D C D
sinC sinD 2cos sin
2 2
+ -
· - =
C D C D
cosC cosD 2cos cos
2 2
+ -
· + =
C D C D
cosC cosD 2sin sin
2 2
+ -
· - = -
C D D C
cosC cosD 2sin sin
2 2
+ -
· - =
or Note
By putting A+B = C and A-B = D in
the previous formula we get this result
Class Exercise - 1
If the angular diameter of the moon
be 30´, how far from the eye can a
coin of diameter 2.2 cm be kept to
hide the moon? (Take p =
approximately)
22
7
A
B
E ( E y e )
r
M o o n
Class Exercise - 1
If the angular diameter of the moon be 30´,
how far from the eye can a coin of diameter
2.2 cm be kept to hide the moon? (Take p =
approximately)
22
7
A
B
E ( E y e )
r
M o o n
Solution :-
Let the coin is kept at a distance r
from the eye to hide the moon
completely. Let AB = Diameter of
the coin. Then arc AB = Diameter
AB = 2.2 cm
c c
30 1
30´
60 2 180 360
p pæ ö æ ö æ ö
q = = = ´ =
ç ÷ ç ÷ ç ÷
è ø è ø è ø
o
arc 2.2
radius 360 r
p
\q = Þ =
360 2.2 360 2.2 7
r 252 cm
22
´ ´ ´
= = =
p
Class Exercise - 2
Solution :-
Prove that tan3A tan2A tanA =
tan3A – tan2A – tanA.
We have 3A = 2A + A
Þ tan3A = tan(2A + A)
Þ tan3A =
tan2A tanA
1–tan2AtanA
+
Þ tan3A – tan3A tan2A tanA = tan2A + tanA
Þ tan3A – tan2A – tanA = tan3A tan2A tanA (Proved)
Class Exercise - 3
If sina = sinb and cosa = cosb, then
–
sin 0
2
a b
=(c)
–
cos 0
2
a b
=(d)
sin 0
2
a+b
=(a) cos 0
2
a+b
=(b)
Solution :-
a= bQsin sin a = bcos cosand
Þ a b= a b=sin – sin 0 and cos –cos 0
– –
2sin cos 0 and –2sin sin 0
2 2 2 2
a b a+b a b a+b
Þ = =
–
sin 0
2
a b
Þ =
Class Exercise - 5
Prove that
n n
n
cosA cosB sinA sinB
sinA –sinB cosA –cosB
A B
2cot , if n is even
2
0, if n is odd
+ +æ ö æ ö
+
ç ÷ ç ÷
è ø è ø
ì +æ ö
ï ç ÷
=í è ø
ï
î
Solution :-
n n
cosA cosB sinA sinB
LHS
sinA–sinB cosA–cosB
+ +æ ö æ ö
= +
ç ÷ ç ÷
è ø è ø
n n
A B A–B A B A–B
2cos cos 2sin cos
2 2 2 2
A B A–B A B A –B
2cos sin –2sin sin
2 2 2 2
+ +æ ö æ ö
ç ÷ ç ÷
= +ç ÷ ç ÷
+ +
ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø
n n
A–B A–B
cot –cot
2 2
é ù é ùæ ö æ ö
= +
ê ú ê úç ÷ ç ÷
è ø è øë û ë û
Class Exercise - 5
Solution :-
n n n
A–B A–B
cot (–1) cot
2 2
æ ö æ ö
= +
ç ÷ ç ÷
è ø è ø
n
n n
A–B
2cot , if n is evenA–B
cot 1 (–1) 2
2
0, if n is odd
ì
ïæ ö
é ù= + = íç ÷ ë û
è ø ï
î
Prove that
n n
n
cosA cosB sinA sinB
sinA –sinB cosA –cosB
A B
2cot , if n is even
2
0, if n is odd
+ +æ ö æ ö
+
ç ÷ ç ÷
è ø è ø
ì +æ ö
ï ç ÷
=í è ø
ï
î
Class Exercise - 6
The maximum value of 3 cosx + 4
sinx + 5 is
(d) None of these
(a) 5
(b) 9
(c) 7
2 2
3cosx 4sinx 3 4+ = +Q
Solution :-
2 2 2 2
3 4
cosx sinx
3 4 3 4
æ ö
+ç ÷
ç ÷
+ +è ø
3 4
5 cosx sinx
5 5
æ ö
= +
ç ÷
è ø
[ ]5 cosxcos sinxsin= a + a
3 4
Let cos sin
5 5
é ù
a = Þ a =
ê ú
ë û
Class Exercise - 6
The maximum value of 3 cosx + 4 sinx + 5
is
Solution :-
3 4
Let cos sin
5 5
é ù
a = Þ a =
ê ú
ë û
5cos(x– )= a
–1 cos(x– ) 1£ a £Q
–5 5cos(x– ) 5Þ £ a £
–5 5 5cos(x– ) 5 10Þ + £ a + £
0 3cosx 4sinx 5 10Þ £ + + £
\ Maximum value of the given expression = 10.
Class Exercise - 7
If a and b are the solutions of a
cosq + b sinq = c, then show that
2 2
2 2
a –b
cos( )
a b
a+b=
+
Solution :-
We have … (i)acos bsin cq+ q =
acos c–bsinÞ q = q
2 2 2
a cos (c–bsin )Þ q = q
( )
2 2 2 2 2
a 1–sin c –2bcsin b sinÞ q = q + q
( )
2 2 2 2 2
a b sin –2bcsin (c –a ) 0Þ + q q + =
\abare roots of equatoin (i),
Class Exercise - 7
If a and b are the solutions of acosq + bsinq
= c, then show that a+b =
+
2 2
2 2
a –b
cos( )
a b
Solution :-
2 2
2 2
c –a
sin sin
a b
a b =
+
Hence
Again from (i),bsin c–acosq = q
2 2 2
b sin (c–acos )Þ q = q
2 2 2 2 2
b (1–cos ) c a cos –2cacosÞ q = + q q
2 2 2 2 2
(a b )cos –2accos c –b 0Þ + q q + =
\sina and sinb are roots of equ. (ii).
Class Exercise - 7
If a and b are the solutions of acosq + bsinq
= c, then show that a+b =
+
2 2
2 2
a –b
cos( )
a b
Solution :-(iv)
\a and b be the roots of equation (i),
\cosa and cosb are the roots of equation (iv).
2 2
2 2
c –b
cos cos
a b
a b =
+
2 2 2 2 2 2
2 2 2 2 2 2
c –b c –a a –b
–
a b a b a b
= =
+ + +
cos( ) cos cos –sin sina + b = a b a bNow
Class Exercise - 8
If a seca – c tana = d and b seca
+ d tana = c, then
(a) a
2
+ b
2
= c
2
+ d
2
+ cd
(c) a
2
+ b
2
= c
2
+ d
2
(d) ab = cd
+ = +
2 2
2 2
1 1
a b
c d
(b)
Class Exercise - 8
If a seca – c tana = d and b seca
+ d tana = c, then
asec –ctan da a =Q
a csin
– d
cos cos
a
Þ =
a a
Solution :-
bsec dtan ca+ a=QAgain
b dsin
c
cos cos
a
Þ + =
a a
Þ = a ab ccos –dsin ….. ii
a csin dcosÞ = a + a ….. (I)
Squaring and adding
(i) and (ii), we get
2 2 2 2 2 2 2 2
a b c (sin cos ) d (cos sin )+ = a + a + a + a
2cd sin cos 2cd sin cos+ a a - a a
2 2
c d= +
Class Exercise -9
2 2 A A
sin –sin –
8 2 8 2
p pæ ö æ ö
+
ç ÷ ç ÷
è ø è ø
The value of
(a) 2 sinA
(c) 2 cosA
1
sinA
2
(b)
1
cosA
2
(d)
Class Exercise -9
2 2A A
sin –sin –
8 2 8 2
p pæ ö æ ö
+
ç ÷ ç ÷
è ø è ø
Q
Solution :-
A A A A
sin – sin – –
8 2 8 2 8 2 8 2
ì ü ì üp p p pæ ö æ ö æ ö æ ö
= + + +í ý í ýç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è øî þ î þ
1
sin sinA sinA
4 2
p
= × =
2 2
sin A–sin B sin(A B)sin(A–B)
é ù
= +
ê úë û
Q
2 2 A A
sin –sin –
8 2 8 2
p pæ ö æ ö
+
ç ÷ ç ÷
è ø è ø
The value of
Class Exercise -10
If , ,
a and b lie between0 and , then value
a of tan2a is
4
cos( )
5
a+b =
5
sin( – )
13
a b =
4
p
(a) 1
(c) 0
(b)
56
33
(d)
33
56
Solution :- \a and bbetween 0 and ,
p
4
– – and 0
4 4 2
p p p
\ < a b < < a + b <
Consequently, cos(a - b) and sin(a + b) are positive.
2
sin( ) 1–cos ( )a +b = a +b
Class Exercise -10
Solution :-
16 3
1–
25 5
= =
2 25 12
cos( – ) 1–sin ( – ) 1–
169 13
a b = a b = =
3 5
tan( ) , tan( – )
4 12
\ a +b = a b =
tan2 tan[( ) ( – )]a = a +b + a b
3 5
tan( ) tan( – ) 56
4 12
3 51–tan( )tan( – ) 33
1–
4 12
+
a + b + a b
= = =
a + b a b
´
If , ,
a and b lie between0 and , then value
a of tan2a is
4
cos( )
5
a+b =
5
sin( – )
13
a b =
4
p