Types of Matrics

1,213 views 22 slides Jun 16, 2023
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

11 types of Matrics. For Grade 11 and more


Slide Content

Types of Matrices
Narmatha Devi N
Mathematics
Grade 11

Here, we will be seeing about some different types of
matrices.
About…

•What is a matrix ?
•What is an order of the matrix ?
Recap…

•Amatrixisarectangulararrayorarrangementofentriesor
elementsdisplayedinrowsandcolumnsputwithinasquare
bracket[].
•IfamatrixAhasmrowsandncolumns,thenitiswrittenas
�=�
��
��
1≤�≤�,1≤�≤�
Matrix

•IfamatrixAhasmrowsandncolumns,thentheorderorsize
ofthematrixAisdefinedtobe��(readasmbyn).
OrderoftheMatrix
�=
497
261
The Matrix Ais of order 2×3
Example

TypeofMatrices…
▪RowMatrix
▪ColumnMatrix
▪ZeroMatrix
▪NonZeroMatrix
▪SquareMatrix
▪DiagonalMatrix
▪ScalarMatrix
▪UnitMatrix
▪UpperTriangularMatrix
▪LowerTriangularMatrix
▪TriangularMatrix

•Amatrixhavingonlyonerowiscalledarowmatrix
•�=�
1�
1�
isarowmatrixoforder1�
RowMatrix
�=47 �=293 �=����

•Amatrixhavingonlyonecolumniscalledacolumnmatrix
•�=�
�1�×1isarowmatrixoforder�×1
ColumnMatrix
�=
5
9
�=
�
�
�
�=
6
7
3
9

•Amatrix�=�
��
��
issaidtobeazeromatrixornull
matrixorvoidmatrixdenotedbyOif
�
��=0for all values of1≤�≤�and 1≤�≤�
ZeroMatrix/NullMatrix/VoidMatrix
�=
00
00
�=
000
000
�=
0
0
0

•AmatrixAissaidtobeanon-zeromatrixifatleastoneofthe
entriesofAisnon-zero
NonZeroMatrix
�=25 �=
60
00
�=
2.59.2
0
3
5
8 0

•Amatrixinwhichnumberofrowsisequaltothenumberof
columns,iscalledasquarematrix.
•i.e,amatrixoforder�×�isoftenreferredtoasasquare
matrixofordern.
SquareMatrix
�=
12
34
�=
111213
212223
313233

•Inasquarematrix�=�
��
��
ofordern,theelements
�
11,�
22,�
33,…�
��arecalledtheprincipaldiagonalor
simplythediagonalormaindiagonalorleadingdiagonal
elements.
SquareMatrix–theprincipaldiagonal
�=
56.23.5
4.876
1291
,
Here, the principal diagonal elements is 5,7,1

•Asquarematrix�=�
��
��
issaidtobeadiagonalmatrixif
�
��=0whenever i≠�
DiagonalMatrix
�=
200
050
006
�=
�0
0�
�=
000
000
000
Note : A square zero matrix is a diagonal Matrix

•Adiagonalmatrixwhoseentriesalongtheprincipaldiagonal
areequaliscalledaScalarmatrix.
•Asquarematrix�=�
��
��
issaidtobeaScalarmatrixif
�
��=ቊ
��??????�=�
0�??????�≠�
,wherecisafixednumber
ScalarMatrix

ScalarMatrix
Note:Anysquarezeromatrixcanbeconsideredasascalar
matrixwithscalar0
�=
500
050
005
�=
120
012
�=
000
000
000

•Asquarematrixinwhichallthediagonalentriesare1andthe
restareallzeroiscalledaunitmatrix.
•A square matrix�=�
��
��
is said to be a unit matrix if
�
��=ቊ
1�??????�=�
0�??????�≠�
UnitMatrix
�=
100
010
001
�=
10
01

•Asquarematrixissaidtobeanuppertriangularmatrixifall
theelementsbelowthemaindiagonalarezero.
•Asquarematrix�=�
��
��
issaidtobeanuppertriangular
matrixif�
��=0forall�>�
UppertriangularMatrix
�=
18507
016
0019
�=
110
016
�=
71890
0124
0035

•Asquarematrixissaidtobeanlowertriangularmatrixifall
theelementsabovethemaindiagonalarezero.
•Asquarematrix�=�
��
��
issaidtobealowertriangular
matrixif�
&#3627408470;&#3627408471;=0forall&#3627408470;<&#3627408471;
LowertriangularMatrix
&#3627408436;=
9100
451.10
2.55.382
&#3627408437;=
50
91
&#3627408438;=
2400
380
572

•Asquarematrixwhichiseitheruppertriangularorlower
triangulariscalledatriangularmatrix
TriangularMatrix
Note:Asquarematrixthatisbothupperandlowertriangular
simultaneouslywillturnouttobeadiagonalmatrix
&#3627408436;=
500
740
839
&#3627408437;=
895
046
002
&#3627408438;=
500
050
005

TypeofMatrices…
▪RowMatrix
▪ColumnMatrix
▪ZeroMatrix
▪NonZeroMatrix
▪SquareMatrix
▪DiagonalMatrix
▪ScalarMatrix
▪UnitMatrix
▪UpperTriangularMatrix
▪LowerTriangularMatrix
▪TriangularMatrix

Identifythetypeofeachmatrix:
&#3627408436;=
123
046
007
&#3627408437;=
&#3627408485;
&#3627408486;
&#3627408487;
&#3627408438;=
100
010
001
&#3627408439;=
20
02
Testingtime…

ThankYou…