Underground Water and its characteristics

DavidMunga1 3 views 20 slides Jul 19, 2024
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

Underground Water


Slide Content

Figure from Hornberger et al. (1998)
Darcy’s data for two different sands

Figure from Hornberger et al. (1998)
Range in hydraulic conductivity, K
13 orders of magnitude

Figure from Hornberger et al. (1998)

Figure from Hornberger et al. (1998)
Generalization of Darcy’s column
h/L = hydraulic
gradient
q = Q/A
Q is proportional
to h/L

q is a vector
q
x
z
q
x
1
q
z
2

z

xz
h
Kq
y
h
Kq
x
h
Kq
zz
yy
xx









q = Q/A
In general: K
z< K
x, K
y

z
h
Kq
y
h
Kq
x
h
Kq
zz
yy
xx








 q= -Kgradh

Vector Form of Darcy’s Law
q = -Kgrad h
q = specific discharge (L/T)
K= hydraulic conductivity (L/T)
grad h= hydraulic gradient (L/L)
h = head (L)

q= -Kgradh
Kis a tensor with 9 components
(three of which are K
x, K
y, K
z)
q is a vector with 3 components
h is a scalar

Scalar
1 component
Magnitude Head, concentration,
temperature
Vector
3 components
Magnitude and
direction
Specific discharge, (&
velocity), mass flux,
heat flux
Tensor
9 components
Magnitude,
direction and
magnitude
changing with
direction
Hydraulic conductivity,
Dispersion coefficient,
thermal conductivity

q= -Kgradh
Darcy’s law
grad h
q equipotential line
grad hq
Isotropic
Kx = Ky = Kz = K
Anisotropic
Kx, Ky, Kz

Figure from Hornberger et al. (1998)
Linear flow
paths assumed
in Darcy’s law
True flow paths
Average linear velocity
v = Q/An= q/n
n = effective porosity
Specific discharge
q = Q/A

Representative Elementary Volume
(REV)
REV
Equivalent Porous Medium
(epm)
q= -Kgradh

Law of Mass Balance+ Darcy’s Law =
Governing Equation for Groundwater Flow
---------------------------------------------------------------
divq= -S
s (h t) +R* (Law of Mass Balance)
q= -Kgrad h (Darcy’s Law)
div (Kgrad h) = S
s (h t)–R*
Water balance equation

Inflow = Outflow
Recharge
Discharge
Steady State Water Balance Equation
Transient Water Balance Equation
Inflow = Outflow +/-Change in Storage
Outflow -Inflow = Change in Storage

Figures from Hornberger et al. (1998)
Unconfinedaquifer
Specific yield = S
y
Confinedaquifer
Storativity = S
b
h
h
Storage Terms
S = V / A h
S = S
sb
S
s= specific storage

)( W
z
q
y
q
x
q zyx








 x y z
= change in storage
OUT –IN =
= -V/ t
S
s= V / (x y z h)
V = S
sh (x y z)
t t
W
REV
S = V / A h
S
s= S/b
here b = z

)( W
z
q
y
q
x
q zyx








 OUT –IN = t
h
Ss


 W
t
h
S
z
h
K
zy
h
K
yx
h
K
x
szyx 

















)()()( z
h
Kq
y
h
Kq
x
h
Kq
zz
yy
xx










Law of Mass Balance+ Darcy’s Law =
Governing Equation for Groundwater Flow
---------------------------------------------------------------
divq= -S
s (h t) +W (Law of Mass Balance)
q= -Kgrad h (Darcy’s Law)
div (Kgrad h) = S
s (h t)–W

W
t
h
S
z
h
K
zy
h
K
yx
h
K
x
szyx 

















)()()( R
t
h
S
y
h
hK
yx
h
hK
x
yyx 












)()( 2D unconfined:R
t
h
S
y
h
T
yx
h
T
x
yx 












)()(
2D confined:
(S = S
sb & T = K b)

Figures from:
Hornberger et al., 1998. Elements of Physical Hydrology,
The Johns Hopkins Press, Baltimore, 302 p.