Unidad 5 concreto endurecido

1,449 views 28 slides Feb 27, 2018
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

civil


Slide Content

Unidad 5 C oncreto endurecido

C oncreto Endurecido Es aquel que tras el proceso de hidratación ha pasado del estado plástico al estado rígido. Después de que el concreto ha fraguado empieza a ganar resistencia y se endurece. Las propiedades del concreto endurecido son resistencia y durabilidad. El concreto endurecido no tendrá huellas de pisadas si se camina sobre el.

Tecnología del concreto El concreto bien hecho es un material naturalmente resistente y durable. Es denso, razonablemente impermeable al agua, capaz de resistir cambios de temperatura, así como también resistir desgaste por intemperismo . La resistencia y la durabilidad son afectadas por la densidad del concreto. El concreto mas denso es mas impermeable al agua. norma del concreto endurecido

N orma del concreto endurecido Propiedades - Resistencia mecánica -Durabilidad -Elasticidad -Impermeabilidad -Resistencia al desgaste -Propiedades térmicas -Propiedades acústicas

Resistencia La resistencia del concreto no puede probarse en consistencia plástica. Las Resistencia a la compresión de un concreto ( F"c ) debe ser alcanzado a los 28 días después de vaciado y realizado el curado correspondiente

Factores que afectan la resistencia RELACION AGUA- CEMENTO: es el factor principal. La resistencia a la compresión de los concretos con o si aire incorporado disminuye con el aumento de la relación agua-cemento. EL CONTENIDO DE CEMENTO: la resistencia disminuye conforme se reduce el contenido de cemento. EL TIPO DE CEMENTO: la rapidez de desarrollo de la resistencia varia para los concretos hechos con diferentes tipos de cemento LAS CONDICIONES DE CURADO: dado que las reacciones de hidratación del cemento solo ocurren en presencia de una cantidad adecuada de agua, se debe mantener la humedad durante el periodo de curado para que el concreto pueda incrementar su resistencia con el tiempo.

5.2 CURADO DEL CONCRETO El curado es el proceso por el cual se busca mantener saturado el concreto hasta que los espacios de cemento fresco, originalmente llenos de agua sean reemplazados por los productos de la hidratación del cemento. El curado pretende controlar el movimiento de temperatura y humedad hacia dentro y hacia afuera del concreto. La falta de curado del concreto reduce drásticamente su resistencia .

Existen diversos métodos de curado: CURADO CON AGUA:Es un método de aporte de agua que consiste en regar las superficies hormigonadas con mangueras. CURADO CON TELAS HUMEDAS : En este caso lo que se humedece son telas (arpillera, sacos de tela, esteras de algodón…) que mantienen la humedad durante mucho más tiempo que el simple regado. Simplemente hay que tener la precaución de mantener siempre mojadas las telas.

CURADO CON MATERIALES SELLANTES: • La función principal de los selladores para concreto es repeler los líquidos de la superficie, protegiendo el concreto de los efectos negativos del medio ambiente. • Suministran protección y mejoran la resistencia a la abrasión y la resistencia superficial. • Selladores POSTCURADO. Se aplican al concreto completamente curado (28 dias ) Sellador-Curador (Dos en uno). Se aplica sobre concreto recién terminado.(Concreto verde)

CURADO CON VAPOR : El curado al vapor tiene la gran ventaja que permite ganar resistencia rápidamente. El procedimiento consiste en someter al concreto a vapor a presiones normales o superiores, calor, humedad, etc. El concreto curado al vapor, deberá tener una resistencia similar o superior a la de un concreto curado convencionalmente. Métodos que aceleran la ganancia de resistencia suministrando calor y humedad adicional al concreto. Esto se logra normalmente con vapor directo, serpentines de calentamiento, o cimbras o almohadillas calentadas eléctricamente.

5-3 CONTROL DE CALIDAD DEL CONCRETO EN OBRA

MUESTREO TEMPERATURA CONTROL DEL CONCRETO FRESCO

ESCLEROMETRÍA ABRASIÓN IN SITU CONTROL DEL CONCRETO ENDURECIDO

EL COSTO DE LA CALIDAD

CLASIFICACIÓN SEGÚN SU NATURALEZA: Destructivas:  determinan la resistencia mediante la rotura de probetas o piezas de concreto. Las pruebas destructivas   que comúnmente se utilizan son: Prueba a la compresión simple, prueba de flexión, prueba de tensión. No destructivas:  determinan la calidad sin destruir la estructura.   Las pruebas no   destructivas más comunes tenemos; prueba del martillo de rebote (esclerómetro), prueba de resistencia a la penetración (pistola de windsor ), prueba de pulso ultrasónico, pruebas dinámicas o de vibración y prueba de extracción de corazones, esta última algunos autores la consideran como prueba semidestructiva

PROCEDIMIENTO DE MUESTREO Prueba de compresión (ASTM C-39) Para una prueba de resistencia se necesitan preparar como mínimo dos cilindros estándar de una muestra de concreto. Muestreo . Para que el muestreo sea representativo deberemos tomar porciones de diferentes puntos de la mezcla a muestrear. La muestra deberá ser transportada al lugar donde se van a preparar los cilindros y luego se volverá a mezclar con una pala para asegurar su uniformidad. Moldes . Los moldes para poder colar los especimenes cilíndricos para pruebas de resistencia a la compresión deberán estar construidos a base de materiales no absorbentes y ser lo suficientemente rígidos para no deformarse. Además deberán ser impermeables. Elaboración de los especimenes . Los moldes deberán colocarse sobre una base lisa y rígida, metálica de preferencia, para lograr que la base del cilindro de concreto sea tersa y evitar que se obtenga una superficie curva.

El concreto se deberá compactar perfectamente dentro del molde cilíndrico. La mejor forma para lograr esto es colocando la muestra de concreto en el molde en tres capas del mismo volumen aproximadamente. Esto debe hacerse con un cucharón, de tal manera que se logre una distribución uniforme. Cada capa deberá varillarse con 25 golpes con una varilla de 5/8” y punta en forma de bala. Los golpes se deberán distribuir uniformemente en toda la sección transversal del molde e introducir la varilla hasta apenas penetrar la capa inferior 2 cm. El varillado no deberá abollar ni deformar la placa metálica del fondo . Curado de los especimenes de prueba . Se deberán curar a una temperatura de 16 a 17 ºC durante 24 horas en el sitio de la obra. Posteriormente se transportarán al laboratorio, se extraerán de los moldes y se almacenarán en condiciones controladas de laboratorio a una temperatura de 23 ± 2ºC y humedad relativa de mínimo el 95%. Cabeceo de especimenes . Los especimenes deben tener sus bases superior e inferior planas con una tolerancia de 0.05 mm y a escuadra con el eje del cilindro.   Generalmente se requiere del cabeceo para cumplir con esta tolerancia. Este se lleva a cabo con una pasta de cemento o con mezclas de azufre con material granular fino.

Procedimiento 1. Antes de colocar el espécimen en la máquina de ensaye, deberá comprobarse la total limpieza de las superficies de las placas que deberán estar en contacto con las cabezas del espécimen. 2. El eje del espécimen estará perfectamente alineado con el centro de aplicación de la carga de la máquina de ensaye. 3. Se comenzará a aplicar una carga en forma continua y sin impacto. La velocidad de aplicación de la carga deberá mantenerse dentro del intervalo de 1.5 a 3.5 kg/cm2/ seg . Durante la aplicación de la primera mitad de la carga total podrá permitirse una velocidad ligeramente mayor, pero no deberán hacerse ajustes en los controles de la máquina de prueba cuando el espécimen comienza a deformarse rápidamente, inmediatamente antes de la falla. 4. La carga deberá aplicarse hasta que el espécimen haya fallado, registrándose la carga máxima soportada. También debe anotarse el tipo de falla y la apariencia del concreto en las zonas de falla. 5. La resistencia a compresión del espécimen deberá calcularse dividiendo la carga máxima soportada durante la prueba, en kilogramos, entre el área promedio de la sección transversal, en cm2 . el resultado deberá aproximarse a 1.0 kg/cm2.  

Prueba de flexión (ASTM C-78) Esta prueba se usa para determinar la resistencia a la flexión del concreto, empleando una viga simplemente apoyada con carga en los tercios del claro. Procedimiento El espécimen de ensaye será girado sobre uno de sus lados, respecto a la posición en que fue colado, y centrado sobre los apoyos. Los dispositivos de aplicación de carga se pondrán en contacto con la superficie del espécimen en los tercios del claro entre los apoyos. Si no se logra un contacto completo entre el espécimen, los dispositivos de aplicación de la carga y los apoyos, las superficies de contacto serán cabeceadas, pulidas o calzadas con tiras de piel en todo el ancho de los especimenes . La carga se aplicará rápidamente hasta alcanzar el 50%, aproximadamente, del valor de ruptura. Después, la velocidad de aplicación será uniforme de tal manera que los incrementos del esfuerzo en las fibras extremas del espécimen no excedan de 10 kg/cm2 por minuto. Después del ensaye se medirá en la sección de falla el ancho y el peralte promedio del espécimen aproximando las lecturas al milímetro.

Método del esclerómetro. El esclerómetro o martillo de Schmidt, es en esencia, un medidor de la dureza de la superficie que constituye un medio rápido y simple para revisar la uniformidad del concreto. Mide el rebote de un émbolo cargado con un resorte después de haber golpeado una superficie plana de concreto. La lectura del número de rebote da una indicación de la resistencia a compresión del concreto. Los resultados de la prueba con esclerómetro (ASTM C-805) se ven afectados por la lisura de la superficie, el tamaño, forma y rigidez del espécimen; la edad y condición de humedad del concreto; el tipo de agregado grueso; y la carbonatación de la superficie del concreto. Cuando se reconocen estas limitaciones y el esclerómetro se calibra para los materiales particulares que se utilicen en el concreto, entonces este instrumento puede ser útil para determinar la resistencia a la compresión relativa y la uniformidad del concreto en la estructura.

Método de penetración. El sondeo Windsor (ASTM C-803), como el esclerómetro, es básicamente un probador de dureza que brinda un medio rápido para determinar la resistencia relativa del concreto. El equipo consiste de una pistola accionada con pólvora que clava una sonda de aleación acerada (aguja) dentro del concreto. Se mide la longitud expuesta de la sonda y se relaciona con la resistencia a compresión del concreto por medio de una tabla de calibración. Tanto el esclerómetro como el sondeo de penetración dañan la superficie del concreto en cierto grado. El esclerómetro produce una pequeña muesca sobre la superficie; y el sondeo de penetración deja un agujero pequeño y puede causar agrietamientos leves.

Pruebas dinámicas o de vibración. Una prueba dinámica o de vibración (velocidad de pulso) (ASTM C-597) se basa en el principio de que la velocidad del sonido en un sólido se puede medir: 1) determinando la frecuencia resonante de un espécimen ó 2) registrando el tiempo de recorrido de pulsos cortos de vibración a través de una muestra. Las velocidades elevadas indican que el concreto es de buena calidad, y las velocidades bajas indican lo contrario. Pruebas de corazones (ASTM C-42). Los corazones de concreto son núcleos cilíndricos que se extraen haciendo una perforación en la masa de concreto con una broca cilíndrica de pared delgada; por medio de un equipo rotatorio como especie de un taladro al cual se le adapta la broca con corona de diamante, carburo de silicio u otro material similar; debe tener un sistema de enfriamiento para la broca, impidiendo así la alteración del concreto y el calentamiento de la broca. El diámetro de los corazones que se utilicen para determinar la resistencia a la compresión debe ser cuando menos de 3 veces el tamaño del máximo del agregado grueso, y puede aceptarse de común acuerdo por lo menos 2 veces el tamaño máximo del mismo agregado, debiendo anotarse en el reporte.

5.4 Análisis estadístico e interpretación de resultados

Los requisitos del reglamento de construcción para concreto reforzado ACI 318 señalan que la resistencia a compresión del concreto puede considerarse satisfactoria si los promedios de todos los conjuntos de tres pruebas de resistencia consecutivas igualan o exceden la resistencia especificada a los 28 días y si ninguna prueba de resistencia individual (el promedio de dos cilindros) se encuentra más allá de 35 kg/cm2 debajo de la resistencia especificada.

Si la resistencia de cualquier cilindro curado en el laboratorio es inferior a la resistencia especificada menos de 35 kg/cm2, se deberá evaluar la resistencia del concreto en el lugar. Cuando sea necesario evaluar la resistencia del concreto en el lugar, deberá determinarse ensayando tres corazones por cada prueba de resistencia en que los cilindros curados en el laboratorio hayan estado por debajo del f’c en más de 35 kg/cm2. Si la estructura permanece seca durante su servicio, antes de la prueba deberán secarse los corazones 7 días a una temperatura de 16 a 27ºC y a una humedad relativa de menos de 60%. Los corazones deberán sumergirse en agua por lo menos 40 horas antes de la prueba si la estructura va estar en servicio en un ambiente húmedo.

Los métodos de prueba no destructivos no sustituyen a las pruebas de corazones (ASTM C- 42). Si la resistencia promedio de tres corazones es de por lo menos 85% del f’c y si ningún es menor que 75% del f’c , se considerará estructuralmente adecuado al concreto de la zona representada por el corazón. Si los resultados de las pruebas de corazones correctamente realizadas son tan bajos como para poner en duda la integridad estructural del concreto, deberá optarse por demoler el elemento o probar físicamente con la carga a la cual estará trabajando dicho elemento.
Tags