Unit 1 PPT .d ocx.pdf ppt presentation

jayaage2716 12 views 108 slides Mar 02, 2025
Slide 1
Slide 1 of 108
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108

About This Presentation

Engineering


Slide Content

DigitalCommunication
UnitNo.1
RandomProcessesandNoise
By

Prof.S.D.Shipne

Contents
•Introduction
•Mathematicaldefinitionofarandomprocess.
•Stationaryprocesses.
•Mean,CorrelationandCovarianceFunctions
Prof.S.D.Shipne

•Ergodicprocess
•TransmissionofarandomprocessthroughaLTIfilter
•Powerspectraldensity(PSD)
•Gaussianprocess
•NarrowbandNoise
•In-phaseandQuadraturecomponentsofnoise
Prof.S.D.Shipne

References
•T1:DigitalCommunicationSystems,
bySimonHaykin4thEd.
•R3:ModernDigital&Analog
CommunicationSystems,byB.P.Lathi4th
Ed.
Prof.S.D.Shipne

Objectives
•Tounderstandrandomsignalsandrandomprocess.
•Todefineandcalculatemean,correlation
andcovariancefunctionsofrandomprocess.
Prof.S.D.Shipne

•Todescribeanddefinevarioustypesofrandomprocess
e.g.ErgodicandGaussianprocessetc.
•Tounderstandtransmissionofarandom
processthroughalinearfilter.
•Tounderstandconceptofnarrow-bandnoiseand
studyitsin-phaseandquadraturecomponents.
Prof.S.D.Shipne

ImportanceofRandomProcesses
•Randomvariablesandprocessestalkabout
quantitiesandsignalswhichareunknownin
advance
•Thedatasentthroughacommunicationsystem
Prof.S.D.Shipne

ismodeledasrandomvariable
•Thenoise,interference,andfadingintroducedby
thechannelcanallbemodeledasrandomprocesses
•Eventhemeasureofperformance(Probabilityof
BitError)isexpressedintermsofaprobability
Prof.S.D.Shipne

Deterministicandrandom
Processes:
Prof.S.D.Shipne

•bothcontinuousfunctionsoftime(usually)
•Deterministicprocesses:
Prof.S.D.Shipne

physicalprocessisrepresentedby
explicitmathematicalrelation
•Randomprocesses:
resultofalargenumberofseparatecauses.
Describedinprobabilistictermsandbyproperties
whichareaverages
Prof.S.D.Shipne

RandomProcesses:significance
•Inpracticalproblems,wedealwithtimevarying
waveformswhosevalueatatimeisrandominnature.
Randomnessorunpredictabilityisafundamentalproperty
ofinformation.
Forexample,
Prof.S.D.Shipne

•Thespeechwaveformrecordedbyamicrophone,
•Thesignalreceivedbycommunicationreceiver
•Thetemperatureofacertaincityatnoonor
•Thedailyrecordofstock-marketdatarepresents
randomvariablesthatchangewithtime.
•Howdowecharacterizesuchdata?Suchdata
arecharacterizedasrandomorstochastic
Prof.S.D.Shipne

processes.
Prof.S.D.Shipne

RandomProcesses:significancecontd.
•Arandomvariablemapseachsamplepointin
thesamplespacetoapointintherealline.
•Arandomprocessmapseachsamplepointto
Prof.S.D.Shipne

awaveform.
•Thusarandomprocessisafunctionofthesample
point‘s’andindexvariable’t’andmaybewrittenas
X(t,s)
forfixedt=t0X(t0,s)isarandomvariable.
Prof.S.D.Shipne

e.g.Temperaturerecordsfortheday
X(t,ξ
Prof.S.D.Shipne

X(t,ξ
n
k
X(t,ξ
2
X(t,ξ
Prof.S.D.Shipne

1
)
)
X(t,ξ)
??????
Prof.S.D.Shipne

??????
)
??????
)
0
Prof.S.D.Shipne

t
1
t
2
t
Prof.S.D.Shipne

Ensembleandsamplefunction
•Thecollectionofallpossiblewaveformis
knownasEnsemble.(samplespaceinrandom
variable)
•Eachwaveforminthecollectionisa
Prof.S.D.Shipne

samplefunction(samplepoint)
•Amplitudesofallthesamplefunctionsat
t=t0isensemblestatistics.
Prof.S.D.Shipne

Classificationofrandomprocesses
•StationaryandNonstationary
Prof.S.D.Shipne

•Wide-SenseorWeaklyStationary
•Ergodic
Prof.S.D.Shipne

StrictlyStationaryrandomprocess:
•Ensembleaveragesdonotvarywithtime
•Thestatisticalcharacterizationofthe
processistimeinvariant.
•ThePDFsobtainedatanyinstantsmustbe
Prof.S.D.Shipne

identical.
•TheAutocorrelationfunctionmustbe
R
x
(t
1,
t
2
)
=
R
x(t
2
Prof.S.D.Shipne

−t
1)
Prof.S.D.Shipne

WidesenseStationaryrandomprocess:
•Meanvalueisconstant
•Autocorrelationfunctionisindependentof
theshifts
Prof.S.D.Shipne

R
x
(t
1,
t
2
)
=
R
x(t
2
−t
1)=R
x(τ)
Prof.S.D.Shipne

•Allstationaryprocessesare
wide-sensestationarybutconverseis
nottrue.
Prof.S.D.Shipne

Stationarity
Prof.S.D.Shipne

Ergodicrandomprocess:
•Ensembleaveragesareequaltotimeaveragesof
anysamplefunction.
T2
1
[]
Prof.S.D.Shipne

1
T2

X
(T)
=x(t)
=lim
T→∞
T

x(t)d
t
−T2
=lim
T→∞
T

μ
X
Prof.S.D.Shipne

dt
−T2

X
•stationaryprocessinwhichaveragesfromasingle
recordarethesameasthoseobtainedfrom
Prof.S.D.Shipne

averagingovertheensemble
•Moststationaryrandomprocessescanbe
treatedasErgodic
Prof.S.D.Shipne

TerminologyDescribingRandomProcesses
•Astationaryrandomprocesshasstatistical
propertieswhichdonotchangeatalltime
•Awidesensestationary(WSS)processhasa
meanandautocorrelationfunctionwhichdonot
Prof.S.D.Shipne

changewithtime
•ArandomprocessisErgodicifthetimeaverage
alwaysconvergestothestatisticalaverage
•Unlessspecified,wewillassumethatall
randomprocessesareWSSandErgodic
Prof.S.D.Shipne

Ergodic
Prof.S.D.Shipne

Mean,Correlationandcovariance
•Meanvalue:
function
Prof.S.D.Shipne

x(t)
x
μ
X(t)=
Prof.S.D.Shipne

E[X (t)]=
time,t
T


xf
X(t)
(x)dx
−∞
Prof.S.D.Shipne

Mean,Correlationandcovariance
function
Prof.S.D.Shipne


Meanvalueofastationaryrandom
processisa constant.
Prof.S.D.Shipne

μ
X(t)=μ
X
•Autocorrelationfunctionofa
randomprocessX(t)isgivenas
R
X
(t
1,
t
2)
=
E[X
Prof.S.D.Shipne

(t
1)X
(t
2)]
Prof.S.D.Shipne

20

Prof.S.D.Shipne
21

•Autocorrelation:
x(t)
τ
time,t
T
•Theauto-correlation,orautocovariance,
Prof.S.D.Shipne
22

describesthegeneraldependencyofx(t)with
itsvalueatashorttimelater,x(t+τ)
Prof.S.D.Shipne
23

Auto-correlationproperties
Symmetry
2. PowerofW.S.S.process
Prof.S.D.Shipne
24

3. Maximumvalue
Prof.S.D.Shipne
25

Autocorrelationfunctionofslowlyand
rapidlyfluctuatingrandomprocesses
Prof.S.D.Shipne
26

Correlationanddecorrelationtimeconcept
Prof.S.D.Shipne
27

Mean,Correlationandcovariance
function

Prof.S.D.Shipne
28

Autocovariancefunctionofastationary
randomprocessX(t)isgivenas
C
X
(t
1,
t
2)
=
μ
2
E[(X
(t
1)−μ
X
)(X
Prof.S.D.Shipne
29

(t
2)−μ
X
)]
=R
X
(t
2
−t
1)−
X
Prof.S.D.Shipne
30

ProbableQuestionsonthistopic
•Numericalbasedoncalculationof
expectationofagivenrandom
process.
•PropertiesofAutocorrelation
•Findmean,autocorrelationand
Prof.S.D.Shipne
31

covarianceofagivenrandomprocess.
Prof.S.D.Shipne
32

Prof.S.D.Shipne
33

R
x
y
(t
1
,t
2
)
=
Prof.S.D.Shipne
34

x
(
t
)
y
(
t
∞∞
=
∫∫
)
x
1y
2f
xy
(x
1,y
2)
dx
1dy
2
Prof.S.D.Shipne
35

12
−∞−∞
Prof.S.D.Shipne
36

JointlyStationaryProperties
•Pro
pert
ies
R
xy
(τ)=
R
xy
(−τ)
Prof.S.D.Shipne
37

(τ)
(τ)


1
⎡R
x
R
x(0)R
y(0)
(0)+R
y
(0)

Prof.S.D.Shipne
38

2
⎣ ⎦
•Uncorrelated:
•O
r
t
h
o
g
o
n
a
l
:
R
xy
(τ)=x(t)y(t
Prof.S.D.Shipne
39

+τ)
=xy
R
xy(τ)=0
Prof.S.D.Shipne
40

30

Ifτ=0thencross-correlationresultsinzeroi.e.therandomvariables
areorthogonal
Prof.S.D.Shipne
31

Prof.S.D.Shipne
32

Spectraldensity
Prof.S.D.Shipne
33

Transmissionofarandomprocessthrougha
X(t)
w.s.s
Y(t)

Linearfilter
μ
Y(t)=
E[Y(t)]
Prof.S.D.Shipne
34


=E



h(τ)X(t
−τ)dτ

Prof.S.D.Shipne
35

Themeanof
theoutput
⎣−∞

=

h(τ
)E[X(t
Prof.S.D.Shipne
36

⎦−τ)]dτ
randomprocessY(t)isgivenas −∞
Prof.S.D.Shipne
37


X


h(τ
)dτ=μ
X
H(0)
Prof.S.D.Shipne
38

−∞
Prof.S.D.Shipne
39

Pointstoremember
•MeanofrandomprocessY(t)producedatthe
outputofaLTIsysteminresponsetoinput
randomprocessX(t)equalstothemeanof
Prof.S.D.Shipne
40

X(t)multipliedbythedcresponseofthe
system.
•Auto-correlationfunctionofthe
randomprocessY(t)isaconstant.
Prof.S.D.Shipne
41

Filteringofrandomsignals
Prof.S.D.Shipne
42

37

Gaussianprocess
•AstochasticprocessissaidtobeanormalorGaussianprocessif
itsjointprobabilitydistributionisnormal.
•AGaussianprocessisstrictlyandweaklystationarybecause
thenormaldistributionisuniquelycharacterizedbyitsfirsttwo
moments.
1 ⎡(y
−μ)
2
⎤1

Prof.S.D.Shipne
38

⎡y
2

f
Y(y)=
exp


Y

=
Prof.S.D.Shipne
39

exp





2

2πσ
Y
Y
Prof.S.D.Shipne
40


2

Prof.S.D.Shipne
41

•Centrallimittheorem
–Thesumofalargenumberofindependentand
identicallydistributedrandomvariablesgetting
closertoGaussiandistribution
•ThermalnoisecanbecloselymodeledbyGaussian
process
•ThetheoremstatesthattheprobabilitydistributionofN
randomvariablesapproachesanormalizedGaussian
distributioninthelimitasNapproachesinfinity.
Prof.S.D.Shipne
42

GaussianRandomProcesses
•Gaussianrandomprocesseshavesomespecialproperties
-IfaGaussianrandomprocessiswide-sensestationary,
thenitisalsostationary
-IftheinputtoalinearsystemisaGaussianrandom
process,thentheoutputisalsoaGaussianrandom
Prof.S.D.Shipne
43

process
-iftherandomvariableX(t1),X(t2),…..X(tn)obtained
bysamplingaGaussianprocessX(t)attimest1,t2,……tn
areuncorrelatedthentheserandomvariablesare
statisticallyindependent.
Prof.S.D.Shipne
44

Noise
•Unwantedwavesthattendtodisturb
thetransmissionandprocessingof
signalsincommunicationsystems.
Typesofnoise

Prof.S.D.Shipne
45

•Shot
noise
asa
rando
m
proce
ss
X(t)=

h(t
−τ
k)
Prof.S.D.Shipne
46

currentpulsegeneratedat
timeinstant
k=−∞
(λt)
k
−λt
Poisson
distribution= 0
e
0
k!
Prof.S.D.Shipne
47

SamplefunctionofPoissoncountingprocessandautocovaianceplot
Prof.S.D.Shipne
48

WHITENOISE
•Theprimaryspectralcharacteristicofthermalnoiseisthatits
powerspectraldensityisthesameforallfrequenciesofinterestin
mostcommunicationsystems
•Athermalnoisesourceemanatesanequalamountofnoisepowerper
unitbandwidthatallfrequencies—fromdctoabout1012Hz.
•PowerspectraldensityG(f)
Prof.S.D.Shipne
42

•Autocorrelationfunctionofwhitenoiseis
•TheaveragepowerPofwh
itenoiseifinfinite
Prof.S.D.Shipne
42

WhiteNoise
Prof.S.D.Shipne

NarrowbandNoiseRepresentation
•Thenoiseprocessappearingattheoutputofa
narrowbandfilteriscallednarrowbandnoise.
•Withthespectralcomponentsofnarrow
±
b
f
candnoise
Prof.S.D.Shipne

concentratedaboutsomemidband
f
frequency
c
•Wefindthatasamplefunctionn(t)ofsuchaprocess
appearssomewhatsimilartoasinewaveoffrequency
•Representationsofnarrowbandnoise

Prof.S.D.Shipne

RepresentationofNarrowbandNoiseinTermsofIn-Phaseand
QuadratureComponents
•Consideranarrowbandnoisen(t)ofbandwidth2Bcenteredon
frequency
f
c,asillustratedinFigure
Prof.S.D.Shipne

•Wemayrepresentn(t)inthecanonical(standard)form:
n(t)=n
I(t)cos(2πf
ct)−n
Q(t)sin(2πf
ct)
n
I(t) n(t)n
Q(t)
com
ponentof.
where, is
n(
i
t
n
)
-phasecomponentof
and
isquadrature
Prof.S.D.Shipne

Prof.S.D.Shipne

PSDofnarrow-bandnoise
46

RepresentationofNarrowbandNoiseinTermsof
EnvelopeandPhaseComponents
47

Propertiesofnarrow-bandnoise
•Thein-phaseandquadraturecomponents
ofnarrow-bandnoisehavezeromean.
•Ifthenarrow-bandnoiseisGaussianthenitsin-
phasecomponentandquadraturecomponentare
jointlyGaussian.
•Ifthenarrow-bandnoiseiswidesense
stationary(w.s.s.),thenitsin-phasecomponent

andquadraturecomponentarejointlyw.s.s.
•PSDsofthesequadraturecomponentsaresame
asthatofPSDoforiginalnarrow-bandnoise.
•Thequadraturecomponentshavesamevarianceas
thenarrow-bandnoise
48

ThankYou
Tags