SlidePub
Home
Categories
Login
Register
Home
General
unit 3 DBMS.docx.pdf geometric transformer in query processing
unit 3 DBMS.docx.pdf geometric transformer in query processing
FallenAngel35
29 views
9 slides
Nov 16, 2024
Slide
1
of 9
Previous
Next
1
2
3
4
5
6
7
8
9
About This Presentation
Geometric transformer
Size:
163.31 KB
Language:
en
Added:
Nov 16, 2024
Slides:
9 pages
Slide Content
Slide 1
GeometricTransformationinQueryProcessingandOptimization
Geometrictransformationsareessentialinvariousareasofcomputerscience,particularlyincomputer
graphics,computervision,andspatialdatabases.Inqueryprocessingandoptimization,geometric
transformationsareusedtoefficientlymanageandqueryspatialdata.Belowaresomekeypointsonthis
topic:
1.UnderstandingGeometricTransformations
●TypesofTransformations:
oTranslation:Shiftingallpointsofanobjectacertaindistanceinaspecifieddirection.
oRotation:Rotatinganobjectaroundapivotpoint.
oScaling:Resizinganobjectbyascalefactor.
oReflection:Flippinganobjectoveraspecifiedaxis.
oShearing:Distortinganobjectsuchthattheshapeisaltered.
●MatrixRepresentation:Transformationscanberepresentedusingmatrices,allowingforeasy
combinationandapplicationtospatialobjects.Forinstance,atransformationmatrixcanbe
appliedtoapointoranobjectinspacetoperformthetransformation.
2.SpatialDatabasesandQueries
●SpatialDataTypes:Datatypeslikepoints,lines,polygons,andpolyhedraareusedtorepresent
spatialdata.
●SpatialIndexing:EfficientindexingmechanismssuchasR-trees,Quad-trees,andKD-treesare
usedtooptimizethestorageandretrievalofspatialdata.
●QueryTypes:
oRangeQueries:Findingallobjectswithinacertaindistancefromapointorwithina
specificarea.
oNearestNeighborQueries:Findingtheclosestobjectstoagivenpoint.
oSpatialJoins:Combiningtwodatasetsbasedontheirspatialrelationship(e.g.,
intersection,containment).
3.QueryOptimizationTechniques
●TransformationTechniques:Optimizingqueriesbytransformingthemintoamoreefficient
formwithoutchangingtheirsemantics.Forexample,applyinggeometrictransformationsto
spatialqueriestominimizethesearchspace.
●Cost-BasedOptimization:Evaluatingdifferentqueryexecutionplansbasedontheirestimated
costandselectingthemostefficientone.
●Heuristics:Usingrulesofthumbtoreducethesearchspaceforqueryoptimization.Thismight
includereorderingofoperations,simplifyingexpressions,orusingapproximationtechniques.
4.ApplicationinSpatialQueryProcessing
●ClippingAlgorithms:Usedinspatialdatabasestooptimizetheintersectionofspatialobjectsby
reducingthesearchspace.
●GeometricPrimitives:Simplifyingcomplexgeometricobjectsintosimplerforms(e.g.,
boundingboxes)forfasterprocessing.
●SpatialJoinAlgorithms:Optimizingspatialjoinsbyusingtechniquesliketheplane-sweep
algorithm,whichefficientlyprocessesspatialdatabysweepingalineacrosstheplane.
Slide 2
5.ChallengesandConsiderations
●Complexity:Geometrictransformationscanbecomputationallyintensive,especiallywithlarge
datasets.
●Precision:Ensuringaccuracyintransformationsandqueryresultsiscritical.
●DataRepresentation:Efficientdatarepresentationandstoragetechniquesareessentialto
minimizespaceandenhanceretrievalperformance.
6.ToolsandLibraries
●PostGIS:AnextensionofPostgreSQLthatsupportsgeographicobjectsandspatialqueries.
●GEOS(GeometryEngine-OpenSource):AC++libraryprovidingspatialoperationsand
geometricfunctions.
●Shapely:APythonpackageformanipulationandanalysisofplanargeometricobjects.
QueryProcessingandOptimization
1.QueryProcessing
Queryprocessinginvolvesthestepstakenbyadatabasemanagementsystem(DBMS)totranslatea
high-levelquery,typicallywritteninSQL,intoaseriesoflow-leveloperationsthatcanbeexecuted
efficientlytoretrievethedesiredresults.
KeyStepsinQueryProcessing:
1.Parsing:
oThequeryisparsedtocheckitssyntaxandsemantics.Theoutputisaparsetreeorsyntax
tree,representingthestructureofthequery.
oAnysyntacticalerrorsinthequeryarecaughtduringthisstage.
2.Translation:
oTheparsetreeisconvertedintoarelationalalgebraexpressionoranintermediateform
thatrepresentsthelogicalstepstoexecutethequery.
oThetranslationalsoincludestheidentificationofrelations(tables),attributes(columns),
andoperations(likejoins,selections,projections).
3.Optimization:
oTheintermediatequeryrepresentationisoptimizedtogenerateamoreefficientexecution
plan.Thisinvolvesselectingthebestpossibleexecutionstrategybasedoncostestimates.
oOptimizationcanbedoneattwolevels:
▪LogicalOptimization:Transformingthequeryintoanequivalentbutpotentially
moreefficientform.Examplesincludereorderingjoins,pushingdownselections,
andcombiningoperations.
▪PhysicalOptimization:Decidingonthespecificalgorithmsanddatastructures
touseforexecutingeachoperation(e.g.,whichjoinalgorithmtouse,howto
accessdata).
4.Execution:
oTheDBMSexecutestheoptimizedqueryplanbyinteractingwiththestoragesystemto
retrieveorupdatedata.
oTheresultofthequeryisreturnedtotheuser.
2.QueryOptimizationProcess
Slide 3
Queryoptimizationaimstofindthemostefficientexecutionplanforaquery,minimizingresourceusage
(likeCPUtime,memory,andI/Ooperations)whileensuringcorrectresults.
StepsinQueryOptimization:
1.ExpressionTransformation:
oTransformationsareappliedtotherelationalalgebraexpressiontocreateequivalent
expressionsthatmaybemoreefficient.
oExamplesinclude:
▪JoinReordering:Changingtheorderofjoinstominimizethesizeof
intermediateresults.
▪SelectionPushdown:Movingselectionoperationsasclosetothebasetablesas
possibletoreducetheamountofdataprocessedinsubsequentsteps.
2.PlanGeneration:
oTheDBMSgeneratesvariouspotentialexecutionplansforthequery,eachrepresentinga
differentwaytoperformtheoperations.
oTheseplansarebasedondifferentphysicaloperationslikeusinganindexscanversusa
fulltablescan,usingnestedloopjoinsversushashjoins,etc.
3.CostEstimation:
oEachexecutionplanisassignedacostbasedonestimatesofresourceusage,including
I/O,CPU,andmemory.
oThecostestimationinvolvesfactorssuchasthesizeofthetables,theselectivityof
predicates,andavailableindexes.
oTheDBMSusesstatisticsaboutthedata(likehistograms,rowcounts)tomakethese
estimates.
4.PlanSelection:
oTheplanwiththelowestestimatedcostischosenastheoptimalplanforexecution.
oInsomesystems,acost-basedoptimizerisused,whereallpossibleplansareevaluated,
andtheonewiththeleastcostisselected.
oInothersystems,heuristic-basedoptimizationisemployed,whererulesofthumbare
usedtoquicklychooseagood(butnotnecessarilythebest)plan.
5.ExecutionofthePlan:
oThechosenplanisexecuted,interactingwiththestoragesystemtofetchormodifydata.
oTheexecutionisoftendoneinapipelinefashion,wheretheoutputofoneoperation
becomestheinputtothenextwithoutneedingtobestoredinintermediatetables.
3.TechniquesUsedinQueryOptimization
●Indexing:Usingindexestospeedupdataretrieval.
●MaterializedViews:Pre-computingandstoringtheresultsoffrequentorcomplexqueries.
●Partitioning:Dividingatableintosmallerpiecesforfasteraccess.
●ParallelQueryExecution:Distributingthequeryexecutionacrossmultipleprocessorsor
machines.
●In-memoryProcessing:KeepingfrequentlyaccesseddatainmemorytoreducediskI/O.
4.ChallengesinQueryOptimization
Slide 4
●Complexity:Asqueriesbecomemorecomplex,thenumberofpossibleexecutionplansgrows
exponentially.
●InaccurateCostEstimation:Theoptimizerreliesondatastatistics,whichmaynotalwaysbe
accurate,leadingtosuboptimalplanchoices.
●DynamicData:Changingdatadistribution,growth,orworkloadcanmakepreviouslyoptimal
plansinefficientovertime.
MeasuresofQueryCostEstimationinQueryOptimization
Querycostestimationisacrucialcomponentofqueryoptimization,asithelpsthedatabasemanagement
system(DBMS)decideonthemostefficientexecutionplan.Thecostofaqueryistypicallyestimated
basedonseveralfactors,eachofwhichcontributestotheoverallresourceusageofthequeryexecution.
KeyMeasuresofQueryCostEstimation
1.I/OCost(DiskAccesses)
oDescription:Referstothecostofreadingandwritingdatatoandfromdisk.Sincedisk
I/Oissignificantlyslowerthanin-memoryoperations,itisoftenthemostsubstantial
componentofquerycost.
oFactorsConsidered:
▪Numberofdiskpagesthatneedtobeaccessed.
▪Sequentialvs.randomaccesspatterns.
▪Useofindexes,whichcanreducethenumberofpagesread.
oExample:AfulltablescantypicallyincurshigherI/Ocostscomparedtoanindexed
lookup.
2.CPUCost
oDescription:Involvesthecostofprocessingdatainmemory,includingtaskslike
filteringrows,performingjoins,aggregatingresults,andsortingdata.
oFactorsConsidered:
▪Numberoftuples(rows)tobeprocessed.
▪Complexityofoperations(e.g.,computationalcomplexityofjoinalgorithms).
▪Numberofcomparisonsorarithmeticoperationsneeded.
oExample:NestedloopjoinsgenerallyhavehigherCPUcostscomparedtohashjoinsfor
largedatasets.
3.MemoryUsage
oDescription:Theamountofmemoryrequiredtoexecutethequery,includingbuffer
spaceforintermediateresults,hashtablesforjoins,andsortbuffers.
oFactorsConsidered:
▪Sizeofthedatasetsbeingprocessed.
▪Requirementsforsorting,grouping,orjoininglargetables.
▪Availabilityofmemoryforcachingdata.
oExample:Queriesthatcanbeexecutedentirelyinmemoryarefasterthanthosethat
requirespillingdatatodiskduetoinsufficientmemory.
4.NetworkCost
oDescription:Relevantindistributeddatabasesystems,wheredatamightneedtobe
transferredacrossdifferentnodesormachines.
oFactorsConsidered:
▪Volumeofdatatransferredoverthenetwork.
▪Numberofmessagesexchangedbetweennodes.
▪Networklatencyandbandwidth.
Slide 5
oExample:Adistributedjoinoperationmayincurhighnetworkcostsiflargeamountsof
dataneedtobeshuffledbetweennodes.
5.CardinalityEstimation
oDescription:Estimatingthenumberoftuples(rows)producedateachstepofthequery
executionplan,whichdirectlyaffectsothercostmeasureslikeI/OandCPU.
oFactorsConsidered:
▪Selectivityofpredicates(howmanyrowssatisfythequeryconditions).
▪Joinselectivity(expectedsizeofresultafterjoiningtables).
▪Availabilityofdatadistributionstatistics.
oExample:Ahighlyselectivefilterconditionthatreducesthenumberofrows
significantlycanlowerthecostofsubsequentoperations.
6.LatencyandResponseTime
oDescription:Thetimetakenforthequerytoreturnthefirstresultandcomplete
execution.Latencyiscriticalforinteractivequerieswherequickresponsetimesare
expected.
oFactorsConsidered:
▪Pipelineabilityofthequeryexecutionplan(howwelloperationscanbe
overlapped).
▪Parallelismanddistributionofoperations.
▪I/OandCPUcosts,astheyimpacttheoverallexecutiontime.
oExample:Aqueryplanthatallowsforearlyoutputofresultswhilecontinuingtoprocess
therestofthedatacanimproveperceivedlatency.
7.SelectivityEstimation
oDescription:Thefractionofdatathatsatisfiesaqueryconditionorpredicate.
oFactorsConsidered:
▪Datadistributionandvaluefrequencies.
▪Histograms,indexes,andotherstatisticsthathelpestimateselectivity.
▪Correlationbetweenattributes.
oExample:Foraqueryfilteringonacolumnwithuniformdistribution,selectivity
estimationisstraightforward,butforskeweddata,itmightbemorecomplex.
8.AccessPathCost
oDescription:Thecostassociatedwithdifferentaccessmethodsusedtoretrievedata,
suchasfulltablescans,indexscans,andindex-onlyscans.
oFactorsConsidered:
▪Typeofaccesspathchosen(e.g.,indexscanvs.tablescan).
▪Numberoftuplesaccessedviathechosenpath.
▪Clusteringofdataondisk.
oExample:Usingaclusteredindexmighthavealoweraccesspathcostcomparedtoa
non-clusteredindexifthedataisaccessedsequentially.
PipeliningandMaterializationinQueryProcessing
Inqueryprocessing,twoprimarytechniquesareusedforexecutingaseriesofoperations:pipeliningand
materialization.Thesetechniquesdeterminehowintermediateresultsarehandledduringquery
executionandhavesignificantimplicationsforperformanceandresourceusage.
1.Pipelining
Pipeliningisaqueryexecutiontechniquewheretheoutputofoneoperationispasseddirectlytothenext
operationwithoutbeingstoredasanintermediateresult.Thisallowsforoperationstobeexecutedina
continuousstreamor"pipeline,"reducingtheneedforintermediatestorageandpotentiallyspeedingup
queryexecution.
Slide 6
KeyConcepts:
●Tuple-at-a-TimeProcessing:Inpipelining,eachtuple(row)producedbyanoperationis
immediatelyprocessedbythenextoperationinthesequence.Thisminimizesthelatencybetween
operations.
●EarlyOutput:Resultscanstarttobereturnedtotheuserbeforetheentirequeryhasfinished
executing,whichimprovesresponsetime.
●MemoryEfficiency:Byavoidingthestorageoflargeintermediateresults,pipeliningcanbe
morememory-efficient,althoughitrequiresenoughmemorytokeepthepipelineactive.
TypesofPipelining:
●Demand-Driven(Lazy)Pipelining:Operationsareexecutedwhenthenextoperatorrequests
data.Thisisoftenusediniterator-basedqueryexecutionmodels.
●Producer-Driven(Eager)Pipelining:Assoonasanoperatorproducesaresult,itisimmediately
passedtothenextoperator,regardlessofwhetherthenextoperatorisreadyforit.
Advantages:
●ReducedI/OCosts:Byavoidingthematerializationofintermediateresultsondisk,I/O
operationsareminimized.
●LowerMemoryUsage:Requireslessmemorycomparedtomaterializingintermediateresults,
especiallybeneficialforlargedatasets.
●ImprovedLatency:Sinceresultscanbestreamedandprocessedon-the-fly,thetimetofirst
result(latency)isreduced.
Disadvantages:
●Complexity:Pipeliningcanbemorecomplextoimplement,especiallywhendealingwith
blockingoperations(e.g.,sortoperations)thatrequiretheentireinputbeforeproducingany
output.
●LimitedFlexibility:Notalloperationscanbeeffectivelypipelined,especiallywhenintermediate
resultsareneededforsubsequentsteps(e.g.,incertainjoinoraggregationoperations).
2.Materialization
Materializationisatechniquewheretheintermediateresultsofaqueryoperationarestored(or
"materialized")intemporarystorage(e.g.,diskormemory)beforebeingusedinthenextoperation.This
approachismorestraightforwardandisusedwhenpipeliningisnotfeasible.
KeyConcepts:
●BatchProcessing:Operationsareprocessedinbatches,withtheentireresultofoneoperation
beingstoredbeforemovingtothenext.
●IntermediateStorage:Resultsarewrittentotemporarystorage(e.g.,atemporarytableorafile)
andreadbackforsubsequentoperations.
●Flexibility:Materializationallowsforcomplexoperationsthatmaynotbepossiblewith
pipelining,suchasthoserequiringmultiplepassesoverdata(e.g.,sorting,group-by).
Slide 7
Advantages:
●Simplicity:Easiertoimplementandmanage,especiallyforcomplexquerieswithmultiplestages.
●Robustness:Suitableforoperationsthatrequiretheentiredatasettobeprocessed(e.g.,sorting,
aggregation).
●ExecutionIndependence:Allowseachqueryoperationtobeexecutedindependently,whichcan
beusefulwhenoperationsarecomplexorhavedifferentresourcerequirements.
Disadvantages:
●HigherI/OCosts:StoringandretrievingintermediateresultscanleadtoincreaseddiskI/O
operations,whichcanslowdownqueryexecution.
●IncreasedMemoryUsage:Requiressufficientmemoryordiskspacetostoreintermediate
results,whichcanbeabottleneckforlargedatasets.
●Latency:Allintermediateresultsmustbefullyprocessedandstoredbeforemovingontothenext
operation,leadingtoslowertime-to-first-result.
3.ChoosingBetweenPipeliningandMaterialization
Thechoicebetweenpipeliningandmaterializationdependsonvariousfactors,includingthenatureofthe
query,theoperationsinvolved,andtheavailablesystemresources.
●Pipeliningispreferred:
oWhenmemoryislimitedandthequerycanbeexecutedinastreamingmanner.
oForqueriesthatcanbenefitfromearlyoutputofresults.
oWhenoperationsarenon-blockingandcanbeprocessedsequentially.
●Materializationispreferred:
oWhendealingwithblockingoperationslikesortingorcomplexjoinsthatrequirethefull
setofinputdata.
oWhentheintermediateresultsarereusedmultipletimesindifferentpartsofthequery.
oInscenarioswheretheoverheadofmanagingapipelinewouldoutweighitsbenefits.
StructureofQueryEvaluationPlans
Aqueryevaluationplan(orexecutionplan)outlinesthesequenceofoperationsadatabasemanagement
system(DBMS)willperformtoexecuteaSQLquery.Thisplaniscreatedbythequeryoptimizerto
ensureefficientdataretrieval,anditisusuallyrepresentedasatreeoradirectedacyclicgraphwhereeach
noderepresentsanoperation.
KeyComponentsofQueryEvaluationPlans
1.Operators:
oRelationalOperators:Thesearefundamentaloperationsinrelationalalgebrasuchas
selection(σ),projection(π),join(⨝),union(∪),intersection(∩),difference(-),and
Cartesianproduct(×).
oPhysicalOperators:Thesearetheactualimplementationsofrelationaloperationsinthe
database,suchasnestedloopjoin,hashjoin,indexscan,andsort.
2.Nodes:
Slide 8
oLeafNodes:Representthebasetablesorindexesthatareaccessedbythequery.Theyare
thestartingpointsoftheexecutionplan.
oInternalNodes:Representoperationsthatcombineortransformdata,suchasjoins,
sorts,aggregations,orprojections.
3.Edges:
oDataFlow:Edgesintheplanindicatetheflowofdatabetweenoperations,typically
movingfromtheleafnodesuptowardstheroot.
4.RootNode:
oTherootnodeoftheplanrepresentsthefinaloperationwhoseoutputistheresultofthe
query.Thiscouldbeaprojection,anaggregation,orafinaljoin.
TypesofQueryEvaluationPlans
1.LogicalPlan:
oAbstractRepresentation:Thelogicalplanisahigh-levelrepresentationthatoutlinesthe
operationsneededtoexecutethequery,usingrelationalalgebraoperatorswithout
specifyinghowtheywillbephysicallyexecuted.
oTransformations:Theoptimizermayapplytransformationstothelogicalplan(e.g.,
reorderingjoins,pushingdownselections)toimproveefficiency.
2.PhysicalPlan:
oImplementation-Specific:Thephysicalplanisaconcreteplanthatspecifiestheexact
algorithmsanddatastructuresusedtoperformeachoperation.Thisplanincludesdetails
likeusingahashjoininsteadofanestedloopjoinoranindexscaninsteadofafulltable
scan.
oCostConsiderations:Thephysicalplanisselectedbasedoncostestimates,which
considerfactorssuchasI/O,CPUusage,andmemoryrequirements.
3.AlternativePlans:
oPlanCandidates:Theoptimizertypicallygeneratesmultiplecandidateplans,each
representingadifferentwaytoexecutethequery.Itthenevaluatesthecostofeachand
selectsthemostefficientone.
oPlanEnumeration:Variousstrategieslikedynamicprogrammingorheuristicsmaybe
usedtoexploredifferentplanpossibilities.
ComponentsofaPhysicalQueryPlan
1.AccessMethods:
oSpecifieshowdataisretrievedfromstorage.Commonaccessmethodsinclude:
▪FullTableScan:Readingallrowsfromatable.
▪IndexScan:Usinganindextofindrowsthatmatchthequerycondition.
▪Index-OnlyScan:Retrievingdatadirectlyfromanindexwithoutaccessingthe
table.
2.JoinMethods:
oSpecifieshowtablesarecombined:
▪NestedLoopJoin:Foreachrowintheoutertable,itsearchestheinnertablefor
matchingrows.
▪HashJoin:Usesahashtabletoquicklyfindmatchingrowsfromthejoined
tables.
▪MergeJoin:Sortsbothtablesonthejoinkeyandthenmergesthem.
3.SortingandGrouping:
Slide 9
oOperationsfororderingresults(usingalgorithmslikeexternalsort)andgroupingdata
(usingalgorithmslikehash-basedgrouping).
4.Aggregation:
oOperationsforcalculatingaggregatefunctions(SUM,COUNT,AVG,etc.),often
combinedwithgrouping.
5.DataManipulation:
oSelection(Filtering):Applyingpredicatestofilterrows.
oProjection:Selectingspecificcolumnstooutput.
oSetOperations:UNION,INTERSECT,andEXCEPToperationsonmultipleresultsets.
6.Pipeliningvs.Materialization:
oDescribeswhetherintermediateresultsarepasseddirectlytothenextoperation
(pipelining)orstoredtemporarily(materialization)beforebeingprocessedfurther.
ExampleofaQueryEvaluationPlan
Considerthequery:
LogicalPlan:
1.Selection:Applythefilteremp.salary>50000.
2.Join:Performanequi-joinbetweenempanddeptonemp.dept_id=dept.id.
3.Projection:Selectthecolumnsemp.nameanddept.name.
PhysicalPlan:
1.IndexScan:Useanindexonemp.salarytoretrieveonlyemployeeswithsalary>50000.
2.HashJoin:Performahashjoinbetweenthefilteredemprowsandthedepttable.
3.Projection:Returnthenamecolumnsfromempanddept.
VisualizationofaQueryEvaluationPlan
Thequeryplancanbevisualizedasatree,where:
●Leafnodesmightrepresenttheindexscansorfulltablescans.
●Internalnodesrepresentoperationslikejoinsoraggregations.
●Therootnoderepresentsthefinaloutputoperation.
SELECTemp.name,dept.name
FROMemp
JOINdeptONemp.dept_id=dept.id
WHEREemp.salary>50000;
Tags
engineering
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
29
Slides
9
Age
382 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
32 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
35 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
32 views
14
Fertility awareness methods for women in the society
Isaiah47
30 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
29 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
30 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-9)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better