Dep a rtme n t o f M e chani c al En g ineering U n it n o : 7 U n it titl e : M A IM Subject Name: CAPM Subject C o de 7 M E 072 1 C o m p u t e r A i de d P r o ce s s ( C AP M ) M a n a g em e n t
C e l l u lar Man u fact u ring Detai l ed Group T echnology Co m po s ite pa r t ROC te c hniq u e (Rank Or d er Cl u stering T ech n iq u e ) Hollier m e thod for Group T echnolog y , cell layout s ; Flexible Man u fact u rin g - C on cept, pr i nc i p l e s , Le a n concept, pr i ncip l e s . M o d er n A pp r oa c h e s i n M an uf a c t ur i n g manufa c turi n g
In m a n u fact u ring activity b a t ch man u f a ct u ring s h o u ld b e efficient and pro du ctiv e . In ad d it i on, t h ere has b een a trend to in t egrate the d e s ign a nd man u fact u ring f u nctions i n a fi r m . An a p pr o ach d irect e d at both of the s e o b je c tive is ‘ Group G r o u p T e ch no l o g y T echnology ’ . “ Group T ec h n o logy i s a m anu f acturing p h il o s op h y i n w hich s imi l ar parts a re i d e n t i fied and gro u ped toge t her to t a k e a d v a n t a g e of their s i m il a r i ties i n de s ign and p r oduction.” Simi l ar pa r ts are arra n ged int o p art families, where e ach p art fa m ily p o sses s es s i m i l a r d esi g n a n d /or manufacturing characteri s tic s .
There a r e two ma j or ta s ks t h at a co m pany m u s t u ndert a k e when it imple m ents gro u p te c hnolog y . I d entifying t h e pa r t famili e s . If the p l a nt ma k es 10 , 00 d iffe r ent pa r t s , r e vie w i ng a ll of the pa r t d raw i n gs and groupi n g the pa r ts into fa m i lies i s a su b st a nt i al ta s k t h at cons u m es a signi f i c ant amo u nt of time. G r o u p T e ch no l o g y R earra n ging p rod u ction machines i nto cel l s . It i s time consu m i n g and c o st l y to p l an a nd a c co m pl i s h th i s rearr a nge m ent, and the machines are not prod u cing d u r i ng the changeove r .
It i s reaso n ab l e to b eli e ve that the proce s s i ng of e ach m e m b e r of a g i ven f ami l y i s s imi l a r , and t h is sho u ld result i n man u fa c turi n g efficiencie s . G r o u p T e ch no l o g y The effi c iencies are general l y a c hi e ved by a r r a n g i n g the pro du ction e q u ipme n t into mach i ne gro u p s , or cells, to faci l itate work fl o w . Organi z i n g t h e prod u ction e qu i p m e nt in t o mac h ine ce l l s , w here each cell s pe c i a l i zes i n the p roducti o n of a pa r t famil y , i s ca l led “ ce l lular m a n uf a ctu r ing ” .
There are two m ajor ta s ks t h at a co m pany mu st u nderta k e when it implements group technolog y . G r o u p T e ch no l o g y R earra n ging p rod u ction machines i nto cel l s . It i s time consu m i n g and c o st l y to p l an a nd a c co m pl i s h th i s rearr a nge m ent, and the machines are not prod u cing d u r i ng the changeove r . I d entifying t h e pa r t famili e s . If the p l a nt ma k es 10 , 00 d iffe r ent pa r t s , r e vie w i ng a ll of the pa r t d raw i n gs and groupi n g the pa r ts into fam i l i es i s a s ub s tantial ta s k t h at consu m es a s i gn i f i c ant a m o u nt of tim e .
C e l l u lar m a n u fact u ring i s a manufa c turi n g proce s s t h at prod u ces families of p a r ts wit h in a s i n g l e line or cell of machines operated b y m achini s ts who work only wi t hin the line or cell. A cell i s a s ma l l s c ale, cl e a r l y- d efined pr o du ction u nit wit h i n a lar g er fa c to r y . This u nit has c omp l ete res p onsib i l i ty for prod u cing a family of l i k e pa r ts or a prod u ct. All ne c es s ary m ach i nes and manpo w er a r e conta i ned w ith i n this cell, thus g i vi n g i t a de g ree of operat i o n a l a u tonom y . Ea c h wor k er i s expected t o have mast e red a f u ll ran g e of operating s k i l l s req u ired b y his or her cel l . Therefore, s ystematic job ro t a t i o n a nd tra i n i n g a r e n eces s ary C e ll u l a r M an uf a c t ur i n g con d it i ons for ef f ec t ive c ell d e v e lopm e nt. C o m plete wor k er tra i n i n g i s nee d ed to ensure t h at flexible w or k er a ss ign m ents can b e f u lfi l led.
+ D M M L L M M ~ ~ C e ll 2 M L D a va i l ab l e f o r ma r ke ting spa ce Fl oo C e l l I - L L A D G L A L L M D C e ll 3 R ec e iv ing an d A G G s h i ppin g
“ A part f amily i s a coll e ction of parts t h at are s imi l ar either in geometric s h a pe and s ize or i n t he proces s ing s te p s requ i red i n their m a n uf a ctu r e .” Pa r t F a mil y Part families are a central feat u re of group technolog y . There are always d ifferenc e s amo n g p arts i n a fam i l y , bu t the s imi l ari t ies a r e clo s e eno u g h that the p arts can b e gr o u ped into the s ame famil y .
T wo p arts that are id e ntical i n shape a nd si z e but q u ite d i ff e rent in man u fact u rin g : 1,0 , 000 u ni t s / Y r . tolerance = .0 1 i nc h , 1015 C R s te e l, nic k el p l at e ; 100/ Y r . tolerance = 0.001 inch, 18 - 8 st a inless steel. Pa r t F a mil y
T en pa r ts are d iff e rent i n s ize, s h ape, s imilar i n ter m s of man u fact u rin g . All pa r ts are mach i ned fr o m cylindrical pa r ts require d ri l l i ng and/or mill i n g . a nd material, but q u ite s tock b y t urni n g; s ome Pa r t F a mil y
Similar pr is matic pa r ts req u ir i ng s i milar mill i ng operat i ons Pa r t F a mil y Di ss imilar pa r ts r e q u ir i ng s i milar machining operat i ons (hole d ri l l i ng, s u rface mil l in g ) I d entical d es i gned pa r ts r e q u ir i ng co m p l etely d ifferent man u fact u ring proce ss es
T r a di t i ona l P r o c e s s L ayo u t
P r o d u c t / G T L ayo u t
Co m p a r i s o n P r o c e ss T ype Layout G r o up T e c h nol o gy Layout The various machine too l s are arran g ed b y funct i o n . Ma c h i ne too l s are arr a n g ed into cell s . T o machine a g i ven pa r t, the workpiece m u s t b e tran s ported b etween the dep a r t ment s . Ea c h cell i s org a n ized to s pec i a l ize in the prod u cti o n of a pa r ticular p art famil y . This results i n m u ch material h a n d ling, lar g e i n - proc e s s inve n torie s , many m a c h i ne setups, lo n g man u fac t u ring lead ti m es, and hi g h cos t . The adv a n t a g es are, reduced workpiece h a n d l i n g, l ower s etup tim e s, fewer s et u ps (in some ca s e s , no s et u p changes are neces s ary), le s s i n - pro c ess invento r y and s horter le a d time s .
There are thr e e general m e t hods for s olvi n g pa r t families grouping. All the three are time consum i ng a nd inv o l v e the an a ly s i s of m u ch of d ata b y p ro p er l y tra i ned per s onne l . G r o up i n g Pa r t F a mili e s Visual in s p ect i on Parts cl ass if i c a t i on and co d ing Pro d u ction Flow Analy s is (P F A)
The vi s u al i n spection m e thod i s the lea s t s oph is t i cat e d and lea s t expe n s i ve m ethod It involves the cl a ss i f i c ati o n of p a r ts into families b y looking at either the phy s i c al p arts or their photogr a p h s and ar r a n g i n g them into groups h a ving s imilar feat u re s . V i s u a l I n spe c t i o n M e t h o d
Pa r t s cl a ss i f ic at i o n an d c o di n g Iden t i f ying s i mi l a r i t i es a n d di f f e r en c es a m o n g par t s a n d re l a t ing them by mea n s o f a coding sch e m e . Most time co n su m ing a n d co m p l i c a t ed me t ho d .
P r od u ction i d en t ifying groupings f l ow part t h at a n alys i s families (P F A) a n d is a m et hod for asso c iated mac h ine P r o d u c t i o n f l o w ana l y s i s (P F A ) uses the inform a ti o n co n ta i n ed on process p l a n s rather than o n part draw i n gs. W o r k parts w i th id e n t i c al o r si m ilar p rocess p lans are c l assif i ed in t o p art fami l ie s . The s e famil i es can then be used t o form log i c a l m a chine cells i n a g roup techn o l o gy layo ut .
Pa r t s C l a ss i f ic at i o n an d Co di n g Iden t i f ying s i mi l a r i t i es a n d di f f e r en c es a m o n g par t s a n d r e lating them by mea n s o f a cod i ng sc h eme. Most time co n su m ing a n d co m p l i c a t ed me t ho d .
R easons for using a c l assi f ication and coding syst e m Design r etr i e v a l. A des i g n er faced w i th t h e t a sk of d e velo p ing a n ew part can use a des i gn ret r i e v a l system t o dete r mi n e i f a si m ilar part al r eady e x ist. A si m p l e change i n a n ex i s t ing part would ta k e much l e ss time than des i gning a w h ole n ew part from scratch. Aut o m a ted process p l a n n in g . The part code for a n ew part c a n be u sed t o search for process p l a n s for ex i s ti n g parts w i th i d en t i c al o r simi l ar code s . Ma c h i n e c ell des i g n . T h e part codes can be used to des i gn m a ch i n e c e l l s c a p a ble o f produ c ing all m em b ers o f a p articu l ar part fa m il y , using the co m posite part conce p t . Pa r t s C l a ss i f ic at i o n an d Co di n g
T h e pr i n c i p al fu n ctio n al areas that u t i l ize a p art clas s if i c at ion a n d coding sys t em are des i gn a n d m an ufac t ur i n g . Fe at ure s Co di n g S yst e m s o f A c c o rd i n g l y , parts c l assi f i c a t ion sys t ems fal l s in t o three c at eg o r i e s : o n e of Systems based o n part des i gn a t tri b utes Sys t ems based o n part m an ufac t ur i n g a t tributes Sys t ems ba s ed on both des i gn a n d m a n ufa c t u r i n g a t tribute s .
Fe at ure s o f Co di n g S yst e m s P ART DESIGN A T T RIBU T ES P ART MA N U F A CTU R I N G A T T RIBU T ES Ba s ic external sh a pe Major proce ss es Bas i c internal sh a pe Minor operations R otat i onal or re c tan g u lar s h ap e Opera t ion s e qu ence Lengt h- to - d i a m e ter ratio Major dimen s io n s Aspect ratio S u rface f ini s h Material types Machine tool Part f u nction Pro d u ction c y cle ti m e Major d imensions Batch s ize Minor d im e ns i ons Ann u al pro du ction T olerances Fixtures req u ired S u rface fini s h C u tting tools u s ed in m anufact u re
T h e t h ree bas i c c o d i ng structures are Co di n g S t ru c t ur e Chain T ype Struc t ure Hi e rarc h i c al Struc t ure Hyb r id Structure
It is al s o known as a po l yco d e, in w h ich t h e in t er p re t a t ion of each s y mb ol in the s e qu ence is al w ays the s ame, it d oes not d epend on the value of the prece d ing sym b ol s . Cha i n - ty p e S t ru c t ur e
It i s also k n o w n a s a mon o c o d e, i n w h ich t h e inter p retati o n of ea c h s u c ces s ive s y mb ol d epen d s on the value of the prece d ing s y mb ol s . H i e r a r c h ic a l S t ru c t ur e
It is a co m b ination of hierarchical and chai n - type struct u res. H y b r i d st ru c t ur e
T o d i s tin g u i s h the hiera r ch i cal c o d e and ch a in type s tru c tu r es, cons i d er a two - d i g it co d e n u m b er for a pa r t, s u ch as 1 5 or 2 5. S u pp o se first d ig i t sta n d s for the gener a l shape of t h e part, 1 m e ans the pa r t is cylindr i cal (rotat i o n al ), and 2 me a n s the geometry i s rectangula r . In h ierarchi c a l s tru c t u re, the inter p retation of the s econd d i g it d epen d s on the value of the fir s t d i g i t . If prec ed e d b y 1, the 5 m ig h t in d icate a l e ngth to d i ameter ratio; and i f p receded b y 2 , the 5 might indicate an a s pect r a t i o. In c h a i n type s truc t u r e, t h e s ymbol 5 would have the s ame m e aning whether prece d ed b y 1 or 2 . For exa m ple, i t m ight in d icate the ov e rall length of the par t . The advant a g e of the hiera r chi c al s tru c tu r e i s that i n general more information can b e inclu d ed i n a co d e of a g i ven n u m b er of d i g it s . Co di n g S t ru c t ure s
The n u m b er of d i g its i n the co d e can ran g e b etween 6 to 3 0. Co d ing s che m es that con t a i n o n ly d es i gn d ata req u ire f e wer d i g it, perhaps 12 or few e r . Most modern cl a ss i f i c ati o n a nd co d ing s ys t em inclu d e b oth d es i gn and man u fact u ring d ata, and t h is u s u al l y req u ires 2 to 3 d i g it s . Co di n g S t ru c t ure s
Opitz cl a ss i f i c at i o n sy s tem – the Univ e rs i ty of Aach e n i n Ger m an y , nonpro p rietar y , Chain typ e . Bri s ch Sy s tem – (Bri s ch - Birn Inc.) CODE (Ma n ufactur i ng Data System, Inc.) C U TPLAN (M e tc u t As s ociates) DCLA S S (Bri g ham Y o u ng Univers i ty) MI C LASS s ystem Part Analog S y stem (Lo v elace, Lawren c e & Co ., In c .) Im p o r tan t S yst e m s
Wi l l it be u s ed for d e s ign retri e val or pa r t family man u fact u ring or b oth? S c ope and ap p licat i on What d epartments i n the co m pany wi l l u s e the s y s tem? What s pecific req u irements d o the s e d epartments have? What kin d s information m u s t b e co d e d ? H ow wide a range of pro du cts mu st b e co d e d ? How co m p l ex are the pa r t s , s h ape s , processes, tooli n g a n d so forth? Cost and time: The co m p any mu st consid e r the costs of i n st a l la t io n , tra i ni n g and mainte n a nce of their pa r ts cl a ss i f i c ati o n and co d ing s yste m . F a c to r s t o Cons id e r
A d ap t ability to other s ystem s : Can the cla s si f ication a nd co d ing s ystem b e r ea d i l y ada p ted to the exi s ting co m pany com p uter s ystems and d ata b a s es? Can i t b e r ea d ily integrated with other exist i ng co m p a n y proced u res, s uch a s pr o cess pla n n i ng, N C pro g r am m in g , and prod u ction s che d u l i ng? F a c to r s t o Cons id e r Man a gement prob l em s : It i s impor t a n t that a l l i nv o lved manag e m e nt per s on n el be infor m ed and supportive of the sy s te m . Al s o, wi l l there b e any problems with the u nion? Wi l l coope r at i on a nd s u p p o rt for the s y s tem b e ob t a i ned from the various d epartments involved?
The basic code co n sists o f nine d i g i ts, wh i ch can be extended by add i n g four m o re di g its. F i rst n ine a re in t ended t o co n v e y both design a n d m an ufac t ur i n g da t a. Form Code F i rst f i ve di g its, 1 2 345 a re cal l ed form code. It desc r ib e s the primary des i gn a t tributes of t he part, such as extern a l shape, (r o t a tio n al o r n on ro t a t io n al) And m ach i ned features (ho l es, thr e ads, gear t eeth a n d so o n . O P IT Z S y s t e m
T h e b a sic code co n sists of n ine di g its, w h ich can be extended by adding four m o re di g its. First n ine are in t en d e d to conv e y bo t h des i gn a n d m an ufac t ur i n g da t a . Form C o de O P IT Z S y s t e m F i rst f i ve di g its, 1 2 345 are cal l ed form code. It desc r ibes t h e pr i m a ry d esi g n a t tributes o f the part, such a s extern a l shape, (ro t a t io n al o r n on ro t a t io n al) And m a ch i n e d feat u res ( h oles, th r ead s , gear tee t h and so on .
Supp l eme n t a ry C o de T h e n ext four di g its, 6 7 8 9, co n s t itu t e the suppl e m e n t a r y code, whi c h i n di c a t es s o me o f the a t tributes that would be usef u l i n m an ufac t ur i n g ( di m ensio n s, work m a t e r i al, st a rting shape a n d a c curacy Seco n dary C o de T h e extra f o ur di g its, A B C D , are refe r red t o a s the O P IT Z S y s t e m seco n dary c ode a n d a r e in t ended to iden t ify the p r oduction operation t ype a n d sequence. T h e seco n dary code can b e des i gned by the user f i r m to serve i t own particular n eeds.
Su pplimentary code , Digit Form code Digit 5 Digit 2 Digit 3 Di g it 4 Di gi t 1 Part cl a s s 6 7 8 9 PI ane su r f ace machining Machining of p l ane s urf a c e s al h o 1 es M a ' m s h a pe R t o f a Io n al machini n g Internal shape ele m e nt Addi t l i Ion t e e th and forming Other holes and t e eth LID s 0.5 ~ External sh a p e e l ement 1 - 2 0, 5 < LID < 3 ~ t= . . .... ~ LID ~ 3 ~ ~ · c ~ Q) With deviation LID$ 2 With deviation LID>2 Special A / B ~3 A J C~4 ~ Machining of p l ane s u rfac e s Ot h er holes, teeth and forming 3 ~ 8 ~ Ro t a tional machini n g ~ Main s hap e . c _ :: (/l -a >. ---, 4 - 5 to) .... =' ~ 1-4 ~ 8- 'C (/l c Q) . _ ~ ~ e to) ~ -: <, « to) :E Main shape ~ ~ {/l , 'i 6 , 9 - eo ~ Machining of p l ane s urfaces Main bore and r otational machining Other hole s , teeth and fo rming ' C <a Main shape - . c - : 7 - · 8 AlB >3 i:. . ·· - s ~ / 8 c A / B ~ 3 AJC<4 Special Z Ma i n shap e 9
Di g it 4 Di git 5 Digit 3 Digi t 2 Dig i t 1 Plan e su rf ac e mac h i ning Au x iliary h o l es and ge a r t e eth Internal s hap e , in t ernal s h ap e el e ments Ex t er nal sha p e , e x te rn al s hap e el e m e nts P a rt cla s s N o surfac e m a ch i ni ng S m o oth , no s ha p e elemen t s No hol e, no bre a kth r ou g h No au x il i ar y hole I--'- L / D ~ . 5 I-- - Surfac e pl a ne a nd / or Axia l , no t on pitch c ir cl e d i am e te r No s hap e e le m e nt s No sh a pe ele m e nts cu rv ed directio n , in o ne ex tern a l 1 1 . "'0 = 1 0.5 < L / D < 3 1 ~ 1 I-- '"0 <l) <l) 0.. = <U f-- I-- 0..'"0 < = l) Ex te rn al pl a n e su rf ac e rel a ted by graduation a round the c ircle t ~ <l) A x i al o n pitch circle diame t er .s ;.... <l) o 2 I-- Thread 2 ...= Thread 2 ...- 3 2 L/D~ 3 2 ~ I=: . . . . . . = .. ..... ...= "'0 ca S ""' .... . I-- . = - CI) <l) 0.. 0.. g- S CZI ..... <l) R a dia l , not o n pit c h ci r cle diame t e r Axi a l a nd /or r a dial a nd/or o th e r d ire c t i on A xia l a nd / o r r a dial o n p e n and / o r o the r di re ct i o ns ;.... ..... <l) E xtern a l groov e ~ Func t ional gr o ov e Funct i o nal groo v e ..... ~ en I..; 3 3 CI) b.O 3 3 I-- a nd / or s lot I-- Z E x ter na l sp lin e No s hap e ele m e nts No s hape e lements -g <l) 4 4 ~ 4 4 ~ 4 - 5 ~ (p o lyg o n) < = l) ~ . . . . . . . = .. . . . . c . . : . E x te r nal plan e surfa c e a nd / or s lot , e xternal s plin e ..0 - ,CJ 5 5 Thread 5 5 I-- Thread . .... ...- 13 "'!:) <l) 0.. 0.. 0.. E 0.. Int ern al p lane surfac e and / or s lot Fun c tio n al g r oo v e Fun c tion a l gr o ov e . < . . l . ) . Spur g e a r t e e th 6 - 7 - 8 - 9 6 6 6 6 en CZI I-- t ""' . , Int e rnal s pline (p o l yg on ) ~ 0.. ca Be v e l g ea r t e eth F unctional c o ne 7 F un c tional co n e 7 7 7 - 8 - 9 -5 I=: <l) . . < . l . ) . ~ 1-1 <l) b.O -5 ~ . . . 8 ... Int e rnal and e x ternal poly g on , g r oo ve a n d / o r s lo t . ~ .... 8 = 8 Other g e ar t e eth Ope ra ting th r ead 8 Op e rat i ng thread 8 s All oth e rs All o th e r s All o t he rs 9 9 All oth e rs 9
Solut i on Length to Dia m eter Ratio: L/D = 1 . 5 Dig i t 1 = 1 Extern a l Shape: Bo t h e n ds stepp e d wi t h s c rew t h read on one end Dig i t 2 = 5 In t ernal Shape: Part conta i ns a t h rough h o le Dig i t 3 = 1 P l a n e surface m a ch i n ing: N o ne Dig i t 4 = Aux i l i ary holes, gear tee t h etc: N o ne Dig i t 5 = Op i t z E x a m p l e
MI C LASS s t a n d s for Metal Inst i tute Cla s sif i cati o n System and was d e veloped b y TN O , the Netherlands Organi z at i on for Ap p l i ed Scientific R esearc h . The M I C LA S S sy s tem was d e v eloped t o help automate and s tandar d ize a n u m b e r of de s i g n , prod u ction and ma n agement f u nction. The s e inc l u de : - Stan d ar d ization of engine e ring d rawings - R etri e val of d raw i ngs a c cor d ing to cla ss ificat i o n n u m b er - Standar d izat i on of proce s s p l ann i ng - A u tomated proce s s p l a nn i n g - S e lection of parts for process i n g on p artic u lar gro u ps of machine tools - Machine tool inves t m e nt ana l ys i s MI C l a s s
T h e MI CL ASS c l assificati o n n u mber c a n range from 12 t o 30 di g its. T h e f i rst 12 di g its are a u n iversal code t h at can be a p p l ied to a n y par t . Up t o 18 ad d it i o n al d i g its can be used t o code d a t a t hat are specific t o the particular c o m pa n y o r indus t r y . F o r example, lot size, pie c e time, cost da t a a n d o p eration sequ e n ce mi g ht be included i n the 18 suppl e me n t a ry di g its. MI C l a s s
MI C l a s s
T h e work part a t t r i bu t es c o ded M ICL A SS n u mber are a s fol l ows in the f i rst 12 di g its of the 2 a n d 3 di g its MI C l a s s DIG I TS A TTRI B UTES 1st di g it Ma i n shape n d rd Shape e l eme n ts 4 t h di g it P osi t ion o f shape elemen t s 5 t h a n d 6 t h dig i t s Ma i n dimensio n s 7 t h di g it Dimension ratio 8 t h d i g i t Au x i l ia r y d i mension 9 t h a n d 10 t h di g its T olerance codes 11 t h a n d 12 t h di g its Material codes
O n e o f the u n ique feat u r es o f the M I C L ASS sys t em i s that part can be coded using a c o mp u t er in t eractivel y . T o c l assify a g i ven part desig n , the user respon d s t o the se r i e s o f questio n s as k ed by the compute r . T h e n u m ber o f ques t io n s depe n ds o n the co m p l e x i t y o f the par t . For a simple part, a s few a s s e ven qu e s t io n s are n eed to c l assi f y the part. MI C l a s s For an a v erage part, the n umber of ques t io n s ra n ges between 10 t o 2 0. O n the basis o f the r espo n ses t o its ques t io n s, t he co m puter assi g ns a code n u mber t o t he part.
Its u niversal a ppli c ati o n i s i n d esi g n eng i ne e ring for r e tri e val of pa r t d es i gn d ata, bu t i t a lso h as a p plica t io n s i n manu f ac t uring proce s s p l anning, purcha s in g , tool d es i gn and inventory control. The CODE n u m b er has eig h t dig i t. For each d ig i t there are 16 pos s ible val u es (0 thro u gh 9 and A through F) w hich are u s ed to d escr i b e the pa r t ’ s d es i g n and man u fact u ring characteri s tic s . The i n itial d ig i t po s ition i n d i cates the b a s i c geometry of the pa r t and i s ca l led the Major Divi s ion of the CODE s ystem. Th i s digit w o u ld b e u sed t o s p ecify wh e ther the sh a p e was a cylinde r , flat p i ece, b lock, or ot h e r . The inter p retation of the r e mai n i n g s e ven d i g its d epends on the value of the fir s t d i g it, bu t t h e s e r e mai ni ng d igits form a c h a i n type s tru c ture. H e nce the CODE s ystem po ss es s es a hy b rid s tru c ture. C OD E S y s t e m
T h e seco n d a n d thi r d digits provide a dd i tio n al in f orm a tion conce r n ing t h e basic geometry a n d p r inc i p a l m a n u factur i ng process for the par t . Dig i ts 4 , 5 and 6 spec i fy seco n dary m anufac t ur i n g process e s such a s threads, groo v es, slo t s, a n d so forth. Di g its 7 a n d 8 a n d used t o indica t e the o verall s ize o f the part ( dia m eter a n d l e n gth for a tu r n ed par t ) by c l assifying i t in t o o n e o f the 16 si z e ra n ges for each o f two dimensio ns . C OD E S y s t e m
C OD E S y s t e m
The pa r t fami li e s 1 are d efined b y the fact t h at their m e mbe r s have s imilar d es i gn and man u fact u ring attr i bu te s . “ C o m p o s i te part i s the hyp o thetical p art that represents all of the d es i gn a nd c o rres p on d i n g man u f a ct u ring a ttributes po ss es s ed by the various individ u als i n the fami l y .” T o prod u ce o n e of the m e m b ers of the pa r t famil y , o p e r a t i ons are Co m p o s i t e Pa r t Con c ep t ad d ed and de l eted corre s pond i ng to t he attr i bu tes of the particular part d esi g n. 1. “ A p a r t fa m ily is a c o ll e c tion o f p a r ts that are s i m ilar e ither in geo m e tric s ha p e and s ize o r in the p r o c e ss i n g s te p s r e quir e d in their m anufa c tu r e.” “Gr ou p T e c hn o l o g y is a manufa c tu r ing p hi l o s op hy in w hich simil a r p a rts ar e ide n tified and g r o u p e d to g e ther to ta k e advan t a g e o f their s i m ila r ities in d e s ign and p r o ductio n .”
S i x simple par t s c o ns i st i ng of se v en Design and Ma n u f acturing at t ri b utes
Co m p o s i t e Pa r t Con c ep t De s ign Feature Corr e spon d ing Opera t ion External C yl i nder T ur n ing Face of C yl i n der Faci n g C yl i n dr i cal Step T urni n g ( Ste p ) Sm o o t h Surface Extern a l C yl i n dr i cal G r inding Axial H o le Dri l l i n g C o u n terbore C o u n terboring In t ernal Threads T apping
A m ach i ne cell wo u ld b e d es i gned to prov i d e all s e v e n m ac h i ni n g cap a b i l it i e s . The mac h ine, fixtures, and too l s would b e s et u p for effi c ient flow of work pa r ts through the cel l . In p r actice, t h e n u mber of desi g n a nd m an u f a ct u ring attrib u t e s would b e gr e ater than s ev en, a nd a l lo w ances w o u ld have to be ma d e for varia t i o ns i n ove r a l l s ize a nd s h ape of p arts i n the pa r t famil y . The co m po s i t e pa r t c o nce p t i s u s ef u l for vi s u a l iz i ng t he mach i ne cell d esi g n pro b le m . Co m p o s i t e Pa r t Con c ep t
Pro d u ction fl o w a n alysis (P F A) i s a wel l - est a b l i shed m e t hodo l ogy u s ed for t ransfor m ing tradi t io na l f u ncti o n al la y o u t into prod u ct- oriented layout. The met h od u s es pa r t routings t o find natural clusters of wo r kstat i o ns for m ing prod u ction cells able to c omplete parts and co m ponents sw i ftly with s i m pl i fied m aterial flo w . P F A i s tradition a l l y a pplied t o jo b -s h o ps w ith f u nctio n al layouts, and after reo r g a ni z at i on wi t hin g r o u ps le a d t i m e s r e d u c e, q u al i ty improves and motivation among per s onnel improve s . P r o d u c t i o n F l o w A na l ys i s
The Ra n k O r d er Cl u ster i ng (RO C ) te c h n iq u e i s s p ecifi c a l ly a p plica b le i n p rod u ction flow a n alysi s . It i s an effici e nt a n d ea s y to u s e al g orit h m for grouping machines into cell s . The a l gor i th m , wh i ch i s b a s ed on s orting r o ws and columns of the machine - pa r t incidence matrix, i s g i ven b elo w . 1. As s ign row b inary wei g ht a nd u s ing ca l cula t e a d ecimal the wei g ht f o r each for mu la R an k O r d e r C l u st er i n g i b ip 2 Deci m al wei g ht for row Where m i s the n u m b er of row and b i s a bin a ry n u m b er (0 or 1) 1 m m p p
2 . Rank t h e rows from top to b o t tom i n o r der of decrea s i n g d ecimal wei g ht va l ues 3 . As s ign b i na ry weight and calcula t e colu m n us i ng the for mu la a deci m al weight for each Deci m al wei g ht for colu m n Where n is the n u m b er of colu m n and b is a b inary n u m b er (0 or 1) pj R an k O r d e r C l u st er i n g 4. Rank the c olu m n f rom left to right in or d er of d ecreas i ng d eci m al weight val u es 5. Contin u e prece d ing steps u ntil there is no change in the po s it i on of each ele m ent in each row and c olu m n n j b 2 n p p 1
R an k O r d e r C l u st er i n g
R an k O r d e r C l u st er i n g
R an k O r d e r C l u st er i n g
R an k O r d e r C l u st er i n g
R O C E x a m p l e A B C D E F G H 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 4 1 1 5 1 1 1 6 1 1 1 1 1
After p a r t - mach i ne group i n g h ave b een identified b y r ank ord e r cl u stering, the next pro b l e m i s to orga n ize the m achines into the most lo g ic a l arran g e m ent. Hollier Meth o d - 1 • This m e thod u s es the s ums of flow “Fro m ” and “ T o” ea c h mach i ne i n the cell. The m ethod can b e o u tlined as follows 1. Develop the Fro m - T o chart f rom part routing d a t a . The d ata cont a ined i n the chart indi c ates n u mbers of pa r t mo v es b e tween the machines i n the cel l . 2. Determ i n e t h e “From” and “ T o” s ums f or each m a chi n e . Th i s is a c c o m p l i s hed b y s u mming al l of the “Fro m ” trips and “ T o” trips for each machine. ➢ The “Fro m ” s u m for a mach i ne i s d ete r mined b y ad d ing the entries i n the corres p on d ing ro w . A rr an g i n g M a chi n e C e ll s – H o lli e r M e t h o d . i n ➢ The “ T o ” s u m is fo u nd by ad d ing the entries in the corr e s p on d ing col u m n.
3 . As s ign mach i nes to the ce l l b a s ed on m i nim u m “ F ro m ” or “ T o” su m s . T h e m achine having the smalle s t sum i s selecte d . ➢ If the minim u m value i s a “ T o” s u m, th e n the mach i n e p l aced at the b eginn i ng of the s e qu enc e . ➢ If the minimum value i s a “Fro m ” s um, t hen t h e mach i ne p l aced at the end of the s equenc e . is H o lli e r M e t h od - 1 is Ti e brea k er ➢ If a tie o c c u rs b etw e en minim u m “ T o” s u ms or minim u m “Fro m ” su m s, then the m ac h ine wi t h the m i ni mu m “Fro m / T o” rat i o i s s electe d .
➢ If b oth “ T o” and “Fro m ” s u ms are eq u al for a s ele c ted mach i ne, i t i s p a ss ed over and the mac h ine w i t h the next lowe s t s u m i s s electe d . ➢ If a m inim u m “ T o” sum i s e q u al to a m inimum “Fro m ” su m , then b oth machines are s elec t ed and p l aced at t h e b eginning and end of the s e qu ence, res p ectively H o lli e r M e t h od - 1 4 . R efor m at the Fro m - T o char t . After e a ch mach i ne h a s b een selecte d , rest r u ct u r e the F r o m - T o c h art b y eliminat i ng the row and column corres p on d i ng to the s elected mac h ine a nd recalculate the “Fro m ” and “ T o” s u m s . 5. R epeat s teps 3 and 4 u ntil all mac h ines have b een a ss i g ned
H o lli e r M e t h od - 1 1 35 S U M 50 45 40 S U M 30 45 50 10 To 1 2 3 4 Fr o m 1 5 25 2 30 15 3 10 40 4 10
H o lli e r M e t h od - 1 3 1 35 S U M 50 45 40 S U M 30 45 50 10 To 1 2 3 4 Fr o m 1 5 25 2 30 15 3 10 40 4 10
H o lli e r M e t h o d . 3 - 2 85 S U M 40 5 40 S U M 30 45 10 To 1 2 4 Fr o m 1 5 25 2 30 15 4 10
H o lli e r M e t h od - 1 3 - 2 - 1 35 S U M 10 25 S U M 25 10 To 1 4 Fr o m 1 25 4 10
H o lli e r M e t h od - 1 3 - 2 -1- 4 S U M S U M To 4 Fr o m 4
D e velop the Fro m - T o chart Deter m ine the Fro m / T o rat i o for each machine Arran g e machines i n ord e r of decrea s ing Fro m / T o rat i o Ma c h i nes with hi g h rat i os a r e placed at t h e b eginni n g of the work flo w , a n d ma c hines w ith lo w rat i os are p laced at t h e end of t h e work fl o w . In c a s e of a tie, the mach i ne wit h the h igher “Fro m ” va l ue i s pl aced ahead of the machine with a lo w er value H o lli e r M e t h od - 2
H o lli e r M e t h od - 2 3 - 2 -1- 4 1 35 S U M 50 45 40 S U M From / T o Ra t io 30 . 60 45 1 50 ∞ 10 . 2 5 To 1 2 3 4 Fr o m 1 5 25 2 30 15 3 10 40 4 10
10 15 H o lli e r M e tho d F l o w D i a gr a m 40 30 25 5 in 3 2 4 1 3 0 o u t 5 10 2 0 o u t
H o lli e r M e tho d E x a m p l e
H o lli e r M e tho d E x a m p l e
P r a c t i c e E x am p l e
P erc e ntage o f in- s e quence m o ves Co m puted b y ad d ing a ll of t h e values r e pre s enting i n - s e qu ence mo v es and d ividing b y the total n u m b er of mo v es P erc e ntage o f backt r ack i ng m o ves P e r f o r m an c e M e as ur e Deter m ined by s u m ming all of the values r epre s enting b acktrac k ing mo v es and d ividing b y the total n u m b er of mo v es
P ercentage o f in- sequence m o ves In -s e qu ence mo v es = 4 0 + 3 0 + 2 5 = 95 T otal num b er of mo v es = 1 35 P ercentage of i n -s e qu ence mo v es = 9 5 / 1 35 = 7 . 4 % P e r f o r m an c e M e as ur e P erc e ntage o f backt r ack i ng m o ves Backtrac k ing mo v es = 5 + 10 = 15 T otal num b er of mo v es = 1 35 P er c entage of b ac k trac k ing m ov e s = 1 5 / 1 35 = 11.1%
- - Fle x i ble manufa c tur i ng sy s tem (FM S ) i s a A group o f h i gh l y au t o m a t ed G T m a ch i n e ce l l, consist i ng o f a g r oup o f proces s i n g wor k st a tio n s (usually CNC m a ch i n e t o ols), in t er c o n n e cted by a n au t oma t ed m a terial ha n dl i n g a n d s t orage sys t em, a n d control l ed by a d i stri b uted co m pu t er syste m . - I nt r o d u c t i o n - T h e r eas o n the F MS i s called f le x ible i s that i t i s capable of proces s ing a v a r i ety o f di f f e rent part s t yles simult a n eou s ly a t the v a r i o u s workst a tio n s, a n d the mix o f part s t yles a n d qu a n tities o f production c a n be adj u s t ed i n response to c h a n g i ng demand pat t e r n s . F MS is m o st suited f or the mi d -v a r i et y , mid-v o lume production ra n ge.
F M S S u i ta bili t y
A mo r e app r opr i a t e t e rm for F M S would be ‘ f lex i b le au t o m a t ed m an ufac t ur i n g s y s t em . ’ T h e u s e o f the word “au t o m a t ed” would distinguish t h is t y pe o f pro d uc t ion techn o logy from o t her m a n ufac t ur i n g systems th a t are fle x i b le but n o t a ut o m a ted, s uch a s a m ann ed G T m a ch i n e ce l l . F M S S u i ta bili t y T h e w o rd “f l e x ibl e ” w o u ld distin g uish it fr o m o t her m an ufac t ur i n g sys t ems that are h ig h ly au t oma t ed but n ot f l ex i bl e , such a s co n ve n tio n al tra n sfer l i n e.
T h e req u ir e m en t in manufac t ur i n g is to get the r i g ht m a terials o r parts t o the r i ght m a ch i n es a t the r i ght tim e . T oo much o r to o so o n c r eates bac k ed up e x cess i n -p r o c ess in v en t or y . T oo l i t t le o r to o late caus e s de l ayed work sched u l e s a n d id l e m a ch i n e s . T h e r esu l t i n ma n y cases i s a poor use o f cap i t a l, i n the form o f excess i n - process in v e n t o ry a n d/or u n derutilizat i on o f the equipmen t . T h e u n derut i liza t ion o f equipme n t and gross inef f i c ien c i e s e x ist i ng i n a v a st maj o r i ty o f ma n ufacturing industr i es. N ee d o f F M S Many of these i n effi c i e n c i es are c o m m o n d a y to da y disturba n ces w i thin the o v era l l m an ufac t ur i n g process.
W h at is n e eded in t o day ’ s co m p etitive e n v ir o n m ent , re g ar d l e ss o f w h at produ c ts a p articular co m pa n y m a k es, is the capability t o eff e c t iv e ly m a nage a n d control the day to day d i sturba n ces whil e meeting cust o mer r e qui r ement s . T h i s i mplies t h a t : T h e r e sho u ld be mi n imum de l ay betw e en ord e r p l ace m ent a n d order de l iver y . Qua l ity a n d r e l i abi l ity should be h i gh Opera t ing cos t s should be predict a ble a n d u n der co n tr o l R e p lac e me n t parts should be a v a i l able a n d a c cessible o n a quick t ur n ar o u n d basis. N ee d o f F M S F M S p r o v ides a mea n s to m a n a ge a n d c o n t rol the u n co n tr o l l ab l e disturba n ces wh i le mee t ing cus t o m er dema n ds a n d requi r eme n t s .
1. W ork Sta t ions 2. Material Hand l ing and Storage System Co m p on e nt s o f F M S 3. Computer Con t rol Syst e m 4. Human R esources
In the sys t em des i g n ed for m a chi n i n g opera t io n s, the pri n c i p le t y pes o f process i n g s t a t ion are CNC m a ch i n e t o ol s . Fol l owing workst a tio n s are also fou n d i n F M S: - Load/U n load s t a t io n s - Mac h ining s t a t io n s - o t her pro ce ssing s t a t ions such a s s h e et me t al fab r i c a t io n , pr e ss work i n g opera t io n , forg i n g process etc. - Assembly opera t io n s - In s pection opera t ion s t a t io n s s u ch a s - Co -ordina t e M e as u r i n g Mac h ine ( CM M ) a n d inspection probes a n d m a ch i n e vision In a d dition t o above, other opera t io n s a n d fu n ctio n s are of t en a c co m plis h e d such a s c l ea n ing part s , cen t ral co o lant de l iv e r y sys t ems for en t i r e F M S, a n d cen t ral i zed ch i p remo v al sys t em s . W o r k S tat i on s
T h e m a t e r ial han d l i n g a n d s t orage sys t em in a f l e x ib l e ma n ufacturing system pe r forms the fol l ow i ng functio ns : - Allows ra n do m , indep en dent moveme n t of w orkparts between s t a t io ns . E n ables handling o f a var i ety o f w o rk p art co n f i g ura t io n s such a s p r ismatic a n d rot a tio n a l . P r o v id e s te m porary s t orag e . P r o v id e s co n ve n i e n t a c c e ss for loading a n d u n loa d ing work part s . Crea t es co m pa t ib i l i ty w i th c o mp u t er co n tr o l. M at er i a l H an dli n g S yst e m - - - -
T h e F MS i n c l udes a dis t r i bu t ed co m puter sys t em that is in t e r faced t o the workstatio n s, materi a l handling sys t em, a n d o t her hard w are co m po n en ts . A typical F M S computer system consists o f a central co m puter a n d mic r oc o m puters co n tr o lling t h e i n divi d ual m a ch i n es a n d o t her co m po n en ts . Co m pu t e r Cont r o l S yst e m T h e fu n c t io n s pe r for m ed by the FM S co m puter co n tr o l sys t em can be grouped in t o the fol l owing ca t egor i e s : W orks t a t ion co n tr o l Distribution o f co n tr o l ins t ructio n s t o workst a tio n s P r od u ction co n tr o l T raf f ic control W orkp i ece m on itoring T o o l c ont r o l - - - - - -
O n e additio n al co m po n ent i n the F M S i s human labo r . Hum a n s syste m . are n eeded to m a nage the opera t io n s of the - - - - - - - Fun c t i ons typ i cally performed by humans i n c lud e : Loading raw workparts in t o the sys t em, Unlo a d i ng f i nish e d parts ( or assemb l i e s) f r om the system, Cha n g i n g a n d set t ing t o ols, P er f ormi n g equipment m a in t en an ce a n d re p ai r , P er f ormi n g N C part programming, P r ogra m ming a n d opera t ing the co m puter sys t em, a n d Man a g i n g the sys t e m . Hu m a n R e so ur c e s
1. F lexibility 2. FMS j u stification Ge n e r a l F M S Cons id er at i on s 3. M anage m ent co m mitm e nt and planning
Fle x ibili t y t o so m e m a nufacturers mea n s co n vert i bi l ity – be i n g ab l e t o co n vert fr o m m an ufac t u r i n g o n e p r o du c t typ e , fami l y a n d / or v olume t o a n o ther w i t h i n the ma n u f acture r ’ s pr e determined tim e . Thus, co n vertibi l ity may be the ‘ r ea l ’ be fle x ibili t y the m an ufac t urer req u ires, a n d it may do n e by m o re F l e xibili t y upg r ading o r alter i ng o f e x isting r esourc e s rat he r than the purc h ase o f a n F M S. General l y , f l ex i bi l ity re f ers t o : Vari e ty o f mix Ada p t a b i l i ty t o des i gn, p r oduction o r routing c h a n ges Mac h ine changeo v er by - - -
- Mac hi ne flex i bi li t y : the e a se w i th wh ich a m a chi n e can pro c ess v a r i o u s opera t io ns . Ma t eri a l h a ndling flex i bi li t y : a measure o f the ease w ith w hi c h dif f ere n t part t y pes can be tra n spor t ed a n d prope r ly positio n ed a t the var i o u s m a ch i n e t o ols i n a sys t e m . T y pe s o f f l e xibili t i e s Bas i c F l e xibili t y - – Operat i on flex i bi li t y : - a measure o f the ease w i t h which alterna t ive operation seque n ces can be used for process i n g a part t y pe.
- V o lume flex i bil i ty a m e a s u re of a s ystem ’ s c a p abi l ity to b e operated pro f itably at d iffe r ent volu m es of the exi s ting pa r t type s . Expans i o n flex i bility the ability to bu i l d a s ystem a n d expand i t increm e ntal l y R o uting flex i bil i ty - - T y pe s o f f l e xibili t i e s S yst e m F l e xibili ty : – a m easure of the altern a tive paths t h at a p art can through a s ystem for a g i ven proce s s p l an P r o c e ss flex i bil i ty ef f ec t ively foll o w - a m e a s u re of the volu m e of the s et of p art types that a s ystem can prod u ce wit h o u t incurring any s et u p P r o duct flex i bil i ty the volu m e of the s et of pa r t types that c an b e man u f a ct u r e d i n a s ystem with minor s et u p . -
- Program flex i bi li ty the ability o f a sy s tem t o run for reaso n ably lo n g pe r iods w i th o ut extern a l in t erven t ion Product i on flex i bi li ty T y pe s o f f l e xibili t i e s A ggreg at e F l e xibili ty : - – t h e vo lume o f t h e s et o f part ty p es that a s y stem can produce wi t hout maj o r in v est m ent in capital equipment Mar k et flex i bi li ty - the ab i l i t y o f a sy s tem t o ef f ic i e n t ly ad a pt t o c h a n g i ng m a r k et co n dition s .
T h e c on cept o f FMS just i f i c a t ion i s m a jor obstacle t o t h e su c cess m an ufac t ur i n g in n o v a t ion a n d capabi l it y . T o inst a ll a n e w mac h in i n g center that wor k s o f f i ve people, for ins t a n ce, mea n t co m p aring th e ir salaries p l us b e n e f its to the cost o f the m a ch i ne . In this m ann e r , t h e e q uipmen t ’ s purc h a s e was easi l y F M S Ju st i f ic at i o n justif i ed. ROI ( R et u rn O n In v est m en t ) i s the dr i vi n g fact o r . T radition a l j u s t i f i c a t ion t e ch n iques, based o n ROI a n d di r e ct labor c o st reductio n . F i n a n c ial pe o p l e are using formulas a nd a c cou n ting forms that include o n ly traditio n al o r stan d ard l i n e i te ms a n d benefits t o run the n umber s .
F MS pr o jec t s are m o re l i k e l y t o o c cur i n co m p a n i e s that p l an f r om t he to p down a n d im p l e ment f r om the bo t t o m up. P l a n n ing i s a distr i bu t ed dec i sion m a k i n g process. It in v olves, to p m a na g ement for l e ade r ship, di r ection, judgm e n t , maj o r dec i sion m a k i n g, a n d remo v ing road blocks; mid d le m a n ageme n t for imple m en t i n g change, ca r ry i n g out dec i sio n s, a n d m an aging resu l t s ; - M ana ge m e nts ’ c o mmi t m e n t & p l ann i n g - - a n d p r oduce r s for doing the work a n d p r o v i d ing informatio n , insig h t a n d kn o w l edge.
Man a gemen t ’ s responsi b ility of the co m mit m e n t and p l a n n ing effort, should be: Management m u s t b e avai l able to provide guidance a n d d irection. Co m m u nicat i o n i s neces s ar y , not only to m e m bers of the project team, bu t to all e m p l oye e s . M an age m ent mu st surro u n d the m selves with strong, c o m petent peopl e . - - M ana ge m e nts ’ c o mmi t m e n t & p l ann i n g - - There m u s t b e ability i n man a gement and f u nction as grou p . project team to - A c cepta n ce by management to c h a n ge ope r at i o n al a nd organizati o n a l layo u t. Brin g ing o u t s ide consultants t o a ss i s t or advise with FMS . -
R ed u ct i on i n the n u m b er of u ncontroll a b le variables I m prove opera t ion a l control through: R ed u cing the d epen d ence on hu m an co m m u nicat i on R emoving operators from the m achining s i te O b je c t iv e F M S o f R e du ce d irect labor c o s t: Elimin a ting d epen d en c e on hig h ly skil l ed m achini s ts I m prove run sh o rt En g ineeri n g chang e s , pro c essing cha ng es, c u tting tool failure and late m aterial d elivery respon s iven e ss cons is ting of:
Chang i ng prod u ct volu m es I m prove lon g - run a c co m mo d ati on s : Ne w prod u ct ad d it i ons and introd u ctions Eliminating m achine set up O b je c t iv e F M S o f Increase machine u til i zation b y: Uti l i z ing au t omated feat u res to r e p l ace m an u al interv e ntion R e du cing lot s izes R e d u ce inventory b y: I m proving inventory turno v er
F MS can be distingui sh ed a c cording t o the k inds o f opera t io n s th e y pe r for m : - P r ocess i ng v s. assemb l y operations T wo o t her ways t o clas s i fy FMS are by 1. Number of m a ch i n es ( W orks t a t io n s) a ) Single m a ch i n e ce l l ( n = 1) b ) F l ex i ble m an ufac t ur i n g ce l l (F M C) ( n = 2 o r 3) c) Fle x ible m an ufac t ur i n g sy s tem (F M S ) (n T y pe s o f F M S = 4 or m o r e ) 2 . L e vel of f l e x i b i l ity a ) Dedi c a t ed F M S b ) Ra n dom o rder F M S
Si n g l e M a chi n e C e l l
It co n sist of a ful l y a u t o m a ted m a ch i n e capable of u n atte n ded opera t io n s for a time pe r iod lo n g e r than o n e m a ch i n e cyc l e. It i s ca p able o f p r oces s ing d i ffe r ent p art s t yl e s, respo n d i ng t o changes i n production sc h ed u l e , a n d a c cepting n ew part Si n g l e M a chi n e C e l l in t roduc t io n s . simulta n eou s . In this case proces s i n g is seque n tial n ot
Si n g l e M a chi n e C e l l p h oto co u rtesy of Cincinnati Mil a cron
F l e xibl e M an uf a c t u r i n g C e l l
It co n sists o f two o r thr e e pr o ces s ing w orks t a t ion and a part handling sys t e m . T h e part handl i ng system i s connected t o a lo a d / u n load s t a t io n . It i s capable o f simulta n eous production o f di f fe r ent part s . F l e xibl e M an uf a c t u r i n g C e l l
F l e xibl e M an uf a c t u r i n g C e l l
It has four o r more p r ocess i ng work s t a t ions ( typica l ly C N C m a ch i n ing cen t ers or tu r n ing cen t er s ) handling co nn ected me c hanic a l l y by a common part system and F l e xibl e M an uf a c t u r i n g S yst e m au t o m a t i c al l y by a distr i bu t ed co m puter sys t e m . It also inc l u d es n o n -p r oc e ssing work st a tio n s t hat support production b ut do not di r ectly partic i p a t e i n i t . e . g. part / pal l et wash i n g s t a t io n s, c o- ordina t e mea s ur i n g m a ch i n e s . T h ese f ea t ures si g n ifica n tly di f f e r en t i a te i t fr o m Fle x ib l e m an ufac t ur i n g ce l l (F M C ) .
F l e xibl e M an uf a c t u r i n g S yst e m P hoto c ourte s y of Cincinnati Mil a cron
F M S S u mm a r i z e d
A ) De d icat e d FMS A ded i ca t ed F M S is des i gned to produce a l i mited v a r i ety of part styles. The part fami l y is l i k e l y to be based on p r oduct commo n al i ty rather than geome t r i c sim i lar i t y . In s te a d of b e ing general purpose, the m a ch i n es can be des i gned for t he spec i f i c processes requi r ed to m a k e the l i mited part fami l y , thus inc r easing the p r oduction ra t e of the sys t em. L e v e l o f F l e xibili t y
B ) Ran d om ord e r FMS A ra n dom order F M S i s m o re appropr i a t e w h en t he part family i s lar g e, T h e r e are subs t antial v a r i a t io n s i n the part co n f i gura t io n , n ew part des i gns w i ll be in t roduced in t o the system L e v e l o f F l e xibili t y a n d engine e r i n g c hanges w i ll o c cur i n the parts produced a n d p r oduct i on sc h ed u le i s subje c t t o c h a n ge f rom day to da y . T o a c co m m o da t e these v a r i a t io n s, the ra n do m -o r der FM S mu s t be m o re f l ex i ble than the ded i ca t ed F M S. It i s equi p ped w i th ge n er a l pur p ose mach i n es t o d ead w i t h the v a r i a t io n s i n produ c t a n d i s cap a ble o f processi n g p arts i n v a r i o u s seque n ces (ra n dom order).
L e v e l o f F l e xibili t y
The layo u t of the F M S is est a bl i shed by the m a terial handling sy s te m . F i ve basic t ypes of F MS layo u ts 1. In - Line F M S L ayo u t Con f i gur at i o n 2. L o op 3. Ladder 4. Open Field 5. R ob o t - cen t red cell
M ach i nes a n d handl i ng system are arranged i n a straig h t l i ne. Simp l est f o rm. T h e parts progr e ss f rom o n e wo r kst a tion t o the n e x t i n w e l l -d e fi n ed seque n ce w i t h work always m o vi n g i n o n e di r ectio n . N o bac k -f l o w . In- li n e L ayo u t ( with ou t s e con d ar y par t han d li n g s y s te m )
L ine tra n sf e r sys t em w i th seco n dary part handling each work st a tion t o fac i l i t a te f l ow i n two d i r e ction sy s tem at In- li n e L ayo u t ( wit h s e con d ar y par t han d li n g s y s te m )
T h e wo r kst a t i o n s are orga n i z ed i n a loop that i s served by a pa r t handling sys t e m . Parts u su a l l y f l ow i n one di r e ction aro u n d the loop w i th the capab i l i ty t o s to p a n d be tra n sfe r r e d t o a n y st a tio n . T h e load/u n l o ad statio n s are t y p i cal l y loca t ed a t one end o f t h e loo p . L oo p L ayo u t
R ecta n gu l ar layout al l ows r e c i r c ulation of pal l ets b a ck to the f i rst s t a t ion in t he seque n ce af t er u n loading at the fin a l s t a t ion L oo p L ayo u t ( R e c tan g u l ar )
T h e lad d er l a yout consists o f a loop w i th rungs betw e en t h e s t raight w h ich L a dd e r L ayo u t section of the loop, on workst a tio n s are loca t ed. R edu c t ion o f a v e r age trav e l d ista n ce a n d tra n sp o rt time be t w e en the s t a t io ns .
Ope n - F i e l d L ayo u t C on sists ladde r s. Layout o f multiple lo o ps a n d is a p p r opr i a t e for process i n g lar g e fa m i l y o f part s .
Uses o n e or as m o re the robo t s m a terial syste m . R ob o ts h a n dl i n g R o b o t - C e nt e r e d C e l l L ayo u t equipp e d w i th gripp e r that we l l the of n on m a k e suited t he m for hand l ing ro t a t io n al a n d ro t a t io n al part s .
1. Increased ma c hine ut i l i z a t i o n , ▪ 2 4 h o u r ope r ati o n li k ely to j u s t ify in v estment, ▪ Auto m atic tool ch a nging, ▪ Q u e u es of p a r ts at s t ati o ns to m a x i mize u tilizatio n , ▪ D y n a mic s ch e dul i ng of p r od u c t ion t o a c co u nt for c h a n ges in de m a n d. 2. F e w er m a chi n es re q uir e d, 3. R e d uction in f a ctory floor space re q u i re d , 4. G r eater re s ponsiven e ss to ch a nge, 5. R e d uced inventory re q u i rem e nts, 6. L o w er m a nu fa cturing l e a d time s , 7. R e d uced labour req u ir e ments 8. Higher product i vi t y 9. Opportunity for un a tt e nded product i on 10. M a chi n es run over n ight ( " l i ghts out oper a tion " ) F M S B e n ef i t s
L im i t ed abili t y t o a d apt t o c h a n ges i n p r oduct o r p r oduct mix ( e x. m a chines a r e o f l i m ite d ), ca p acity a n d the tooling n ecessary for products, e v en o f the sa m e fa m il y , i s n ot always feasib l e i n a g i ven FM S ) Subs t a n tial pr e -p l a n n ing ac t ivit y , Expensive, cos t ing mi l l i o n s o f dollars, T e c hn o log i c a l proble m s o f exa c t co m p o n ent positio n ing a n d pr e c i se timing n ecessary t o process a co m po n en t . , Soph i sticated ma n ufacturing system s . D i s a dv anta ge s
Aut o ma t ed Gu i d ed V e h i c l e s ( A G V s), a s th e y are c o mm o nly re f er r ed t o “d r iver l ess trac t ors ” . An A GV i s a ba t tery operated, programm a ble a n d auto m a t ic guid e d m o bile ve h icle w i th o ut the n eed o f human in t erven t ion used for tr a n spor t ing the m a terial fr o m the st o r e s t o the shop / assemb l y l i ne o r vice versa. The m a in parts o f A GV are: A u to m at e d Gu id e d V e hicl e s 1. Structu r e 2. D ri v e System 3. Steering Mechanism 4. P ower so u rc e - battery 5. Onboard computer for control
1. T owi n g 2. Pa l let T ruck T y pe s o f A G V s 3. U n it Load 4. Fork T ru c ks 5. Ass e mbly V ehicles
1. W i red Nav i ga t ion 2. G u i d e T ape Nav i ga t ion T y pe s o f Na vi g at i o n i n A G V s 3. Laser T arget Na v i g at i on
A G V s E x a m p l e s
T ow i ng vehicle pulls one or more tra i lers to form a tra i n. T h i s type i s ap p li c a b le i n m oving h e avy p a y lo a ds ov e r large d i s tance in w a re h ou s es or factories with or witho u t interm e d iate p i c k u p and d rop off p oi n ts along the rout e . It cons is ts of 5 - 10 tra i lers and i s an efficient tran s port s ystem. T he towing cap a city i s u p to 6 0,000 poun d s . T o wi n g V e h icl e
Pallet trucks are used to m o ve pal l eti z ed loads alo n g pr e determined rou t es. T h e cap a city o f a n A GV pallet truck ranges u p t o s e veral th o us an d k i l o grams a n d so m e are capable o f ha n dl i n g two pal l et s . It i s ach i e ved for vertical m o ve m ent t o reach loads o n racks a n d sh e lves. Pa ll e t T r u c k s
The s e are u s ed to mo v e u nit loads from one s tat i on to anothe r . It i s also u sed for a u to m atic l o a d i n g and unl o a d i ng of p a llets rol l er s . Load cap a city ran g es u p to 2 5 k g or le ss . E s pecia l ly the s e vehicles are d es i gned to mo v e s mall load s . by means of U n i t L oa d Ca rr i er s
Fo r k trucks are equipp e d w i th f o rks wh ich can m o ve in vertical dir e ction to reach pa l le t ized l o ads o n rac k s a n d s t a n d s . T h is v e h i c le has a n abi l i t y to F o r k T r u c k s load a n d u n load the pa l le t ized l o ads bo t h a t f lo o r l e vel a s we l l a s s t a n d s . It c a n position its forks a t a n y h e i g ht so t h at conv e y o rs or load sta n ds o f vary i n g height can be assed easi l y .
A GV asse m bly l i n e vehic l e is des i g n ed to carry suba s sembli e s through a sequ e n ce of a ssembly a f ini sh ed A sse mbl y L i n e V e hicl e workst a tio n s w h e re parts assemb l y . At asse m bly workst a tio n , are asse m bl e d t o bui l d t he asse m bl e r t a k es the p arts on bo a rd a n d co m p l etes h i s t a sk o f asse m bl y .
Dispatching, tracking a n d m on itor in g u n der rea l - t ime co m puter co n tr o l Be t ter resource u t i l i z a t ion Increased co n tr o l o v er m a terial f l ow a n d m o ve m ent R educed product dam a ge a n d l e ss m a terial m o ve m ent n oise R ou t ing consistency but f l e x i b i l ity B e n ef i t s A G V s o f Opera t io n al en v i r o n me n ts reliability in haz a rdous a n d spec i al Abi l ity t o inte r fa c e w i th v a r i o u s pe r ip h eral sys t ems, such as mach i ne t o ols, robo t s a n d co n v e y o r systems Hi g h loc at ion a n d positio n ing a c curacy
L imi tat i on s o f A G V s The sys t em r equires h i gh in v est m ent A GV sys t em i s n ot suit a ble f o r sm a ll u n its
Aut o ma t ed Gu i d ed V e hi c l e s can be used i n a w i de v a r i ety of appl i ca t io n s t o transport m a n y di f fer e n t typ e s o f m a terial includ i n g pal l ets, rol l s, racks, carts, a n d co n t a iners. 1. Raw Ma t er i al Handl i ng : - A G V s are co m monly u s ed to tran s p ort raw materials pa p e r , s teel, ru b b e r , m e tal, and p l a s ti c . s u c h as A G V A pp lic at i on s This inclu d es tran s p orti n g materials fr o m r eceiving to the warehouse, a nd d elivering materials d irectly t o prod u c tion line s . 2 . W ork - i n -P r ocess Move m en t : - W ork - i n - Proc e s s mo v e m ent i s o ne of the fir s t appli c at i o n s where automated guided v ehicles were u s e d , and inc l ud e s the repetit i ve mo v ement of materia l s throug h o u t the m an u fact u ring proces s .
3. Pal l et Ha n dl i n g : - Pa l let h a n d li n g i s a n extremely po p u l ar a p p l i c at i on for A G V s as repetit i ve mo v e m e nt of pallets is ve r y com m on in man u fact u ring and d i s trib u tion facil i tie s . A G V A pp lic at i on s 4 . F i n is h ed P r od u ct Ha n dl i ng : - Mov i ng f i n i s h ed goods from man u fact u r ing t o s tor ag e or s h i ppi n g i s the final mo v e m ent of materi a ls b efore th e y are d eliver e d to c u stom e r s . The s e mo v e m ents often re q u ire the gentle s t materi a l h a n d ling b ec a u s e the products are co m pl e te a n d s u bj e ct to d amage from rough handlin g .
“ AS/ R S r e fers to a variety of compute r -controlled m e thods for auto m a t ically de p osi t ing a nd r e trieving loads f rom d efined sto r age loc a tions ” . AS/ R S are used w i d e ly i n bo t h Manufacturing a n d Distribution opera t io n s t o hold a n d bu f fer t h e f l ow o f m a terial m o vi n g through the pr o cess t o the ultima t e en d -use r . A u to m at e d S to r a g e R e t r i e v a l S yst e m &
P r oblems of co n ve n tio n al s t orage system: Much time s p e nd for s ea r ching lo s t or da m a g e d products a nd ina c c u r a te records, O r d ers s p ending too much time in the factor y , c a u s ing c u stomer d el i ve r ies to b e la t e, W a ste much s p a c e , Exc e ss inventor y , W or k ers a re exp o s e d d a ng e rs. N ee d o f ASR S For the reso l ution of a bove p rob l ems AS R S is used, because The op e r a tion a r e tot a lly autom a ted, Co m p u ter controll e d, F u lly inte g r a ted with f a ctory a nd wa r e h ou s e op e r a tion s .
1. S t orage s tructure 2. S/ R ( S t orage/ R etri e va l ) machine Co m p on e nt s o f ASR S 3. S t orage m odul e s e.g. pallets f o r unit loads 4. One or m ore p i cku p - and deposit sta t ion 5. Ex t ernal hand l i n g system
1. St o rage s t ructure wh i ch is the rack framework ma d e of fa b ricated s teel s u p p orts the loads contained in the AS/RS 2. S/R m a ch i n e Co m p on e nt s o f ASR S is u s ed to a c co m p l i s h s tora g e tran s action, d elivering loads from the input s tat i on into s tora g e, and retri e ving loads from s tora g e and d elivering s tat i on. 3. St o rage m o dules are the unit load containers of the s tored material. inclu d e pa l let s , s teel wire b a s k ets and container s , p l a s tic pans
4 . P i c k -a n d-deposit s t a t ion i s where loads are transferred into and o u t of the AS/R S . genera l ly loc a ted at t h e end of the ai s l e s for a c cess t he external handling s ystem that b rin g s loads and ta k es loads awa y . to the AS/RS Co m p on e nt s o f ASR S 5. Extern a l handling sys t em b rin g s loads to the AS/RS and ta k es loads awa y . Example RTV ( R o b otic T ran s fer V ehicl e )
Co m p on e nt s o f ASR S
Impro v ed in v en t ory m an ageme n t R e l iab l e a n d imme d iate de l ive r y Space eff i c i ency Simp l i f i e d a n d fas t er in v en t ory response R educed lost o r misp l aced p a r t s, t o ols a n d f i xtures Design f l ex i bi l ity t o a c co m m o da t e a w i de ra n ge o f loads R educed labor cos t s R educed scrap a n d re w ork A c curate inven t ory a n d load location Increased u t i l i z a t ion po t en t ial B e n ef i t s ASR S o f
The initial cost o f the AS R S is hi g h AS R S requi r es au t o m a t ed guid e d v eh i c l es or c o n v e y o rs AS R S is feasib l e o n ly for large m an ufac t ur i n g est a bl i shmen t s L imi tat i on s ASR S o f
F M S is d i ff e r e nt f r om conve n tio n al ce l l by virtue of its central co m puter control hi g hly d e veloped s oftware co m p l ete pa r t tooling and m aterial han d ling flexi b il i ty and c ontrol rando m ness of prod u ction sched u l i ng and machinin g . Ce ll u la r V s F l e x ibl e M a n uf a c t u r i n g B o th s i mi l arities a n d di f fe r ence ex i s t s be t we e n ce l lu l ar ma n ufacturing a n d F M S.
Si m ilariti e s Simi l ari t ies e xi s t from the viewpoint that the l e vel of auto m ati o n f o r either cell or s ystem can vary d epen d ing u p o n how mu ch te c hnology and m on e y will b e ap p lied. C e ll u l a r V s F l e xibl e M an uf a c t ur i n g Both cells and s ystems p o s s e s s m u lt i p l e pa r t p roc ess i ng pa r t pro g ram s tora g e cap a b i l it y . and A u tomatic or s e m iauto m atic p art l oad i ng c an be a c co m m o d ate i n either cell or F M S . M a g az i ne, h o p p er guid e d v ehicle, m u lti s tat i o n s huttle and robots c a n b e u s ed b oth i n c ell or FMS a c c ording to the s ize, type and co m p l exity of t h e cell or s ystem.
Di f f e renc e s C e lls l ack ce n tral co m pu t er contr o l with rea l - time ro u ting, l oa d b alan c i ng s o f tware and prod u ction s che d u l i ng l o g ic . Wh i le FMS is co n nected to a high l e vel c omp u ter s yst e m wit h in the operat i o n . man u fact u ring C e l l s a r e tool ca p a c ity constr a ined. T oo l s av a ila b le i n the poc k ets are l i mite d , wh i ch l i mits the pa r t va r ie t y prod u ced i n the cel l . C e ll u l a r V s F l e xibl e M an uf a c t ur i n g FMS with a u tomated tool d elivery and tool m a n a gement can auto m ati c a l ly tran s fe r , excha n ge and migrate tools t h r o ugh centraliz e d co m puter control. C e l l s genera l ly have le s s fle x ibil i ty than a n FMS and are rest r ict e d to a relat i vely ti g ht family of pa r t s . On the other hand, FMS has g re a ter d epth and b readth of flexibil i ty d ue to ran g e of pa r ts i n varyi n g lot s ize that can b e a c co m mo d ated in s ystem, random machine s c he du l i ng and auto m ated m aterial flow a n d mo v e m en t .
Lean i s a m e thodol o gy to reduce wa s te i n a man u fact u ring s ystem witho u t s a crificing pro du ctivity and q u alit y . The general m e an i ng of le a n i s that i t con s ists of a s et of t oo l s that help to identify and elimina t e wa s te. Th a t wa s te can b e created thro u gh a n o v erb u rden and u n e v e nness i n wor k l o a d s . T h e re m ov a l of w a s te from any s ystem i mproves q u ality and prod u ction time, wh i le reducing cos t . So m e lean m anuf a ct u ring tool s i nclu d e KANBAN ( W ork Flow Visua l isat i o n ) , 5S, P oka Y o k e (Err r Proo f ), ROC, Cont r ol Charts et c . Le a n M an uf a c t ur i n g
5 P r i n ci p l e s o f Le a n M an uf a c t ur i n g
V alue. V alue i s al wa y s d e fined b y the c u st ome r ’ s needs f or a specif i c p r od u c t . V alue s t r ea m . O n ce the v al u e (e n d g oal) h as been d e t er m ined, the n e xt s t ep i s m apping the “ v a l ue s t r ea m , ” or a l l t h e s t e p s and p r ocesses i n v o l v ed i n t aking a specif i c p r od u ct f r om r a w m a t e r ials and del i v er i ng the final p r od u ct t o the c u s t om e r . Fl o w . A f t er the w a s t e has been r e m o v ed f r om the v alue s t r e am, the n e xt s t ep i s t o b e su r e t h e r e m aining s t e p s fl o w smoot h ly w it h n o i nt e r ru p ti o ns, de l a y s, or bo t tl e nec k s . Pul l . W ith i m p r o v ed fl o w , time t o ma r k et (or ti m e t o cu s t o mer) c an b e d r am a ti c a ll y i m p r o v e d . This ma k e s i t much eas i e r t o del i v er p r od u cts as needed, as i n “j u s t i n ti m e” manu f act u r i ng or del i v e r y . P er f ec t io n . Ac c omp l i s hing S t e p s 1 - 4 i s a g r e a t s t art, bu t the fifth s t ep i s perha p s the m o s t i m por t a n t: m ak i ng l e an thi n k i ng a nd p r ocess i m p r o v e m e n t part of y our c orp o r at e c u ltu r e . A s g ains c o n tinue t o pile u p, i t i s i m p o r t a n t t o r e m e m ber l e an i s n ot a s ta t ic s y s t em and r equi r es c on st a n t e f f ort and v i gilance t o p er f e c t . 5 P r i n ci p l e s o f Le a n M an uf a c t ur i n g