Unit 7_Modern Manufacturing Process.pptx

PuneetMathur39 28 views 146 slides Jul 09, 2024
Slide 1
Slide 1 of 146
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146

About This Presentation

Manufacturing process


Slide Content

Dep a rtme n t o f M e chani c al En g ineering U n it n o : 7 U n it titl e : M A IM Subject Name: CAPM Subject C o de 7 M E 072 1 C o m p u t e r A i de d P r o ce s s ( C AP M ) M a n a g em e n t

      C e l l u lar Man u fact u ring Detai l ed Group T echnology Co m po s ite pa r t ROC te c hniq u e (Rank Or d er Cl u stering T ech n iq u e ) Hollier m e thod for Group T echnolog y , cell layout s ; Flexible Man u fact u rin g - C on cept, pr i nc i p l e s , Le a n concept, pr i ncip l e s . M o d er n A pp r oa c h e s i n M an uf a c t ur i n g manufa c turi n g

 In m a n u fact u ring activity b a t ch man u f a ct u ring s h o u ld b e efficient and pro du ctiv e . In ad d it i on, t h ere has b een a trend to in t egrate the d e s ign a nd man u fact u ring f u nctions i n a fi r m .   An a p pr o ach d irect e d at both of the s e o b je c tive is ‘ Group G r o u p T e ch no l o g y T echnology ’ . “ Group T ec h n o logy i s a m anu f acturing p h il o s op h y i n w hich s imi l ar parts a re i d e n t i fied and gro u ped toge t her to t a k e a d v a n t a g e of their s i m il a r i ties i n de s ign and p r oduction.” Simi l ar pa r ts are arra n ged int o p art families, where e ach p art   fa m ily p o sses s es s i m i l a r d esi g n a n d /or manufacturing characteri s tic s .

 There a r e two ma j or ta s ks t h at a co m pany m u s t u ndert a k e when it imple m ents gro u p te c hnolog y .  I d entifying t h e pa r t famili e s . If the p l a nt ma k es 10 , 00 d iffe r ent pa r t s , r e vie w i ng a ll of the pa r t d raw i n gs and groupi n g the pa r ts into fa m i lies i s a su b st a nt i al ta s k t h at cons u m es a signi f i c ant amo u nt of time. G r o u p T e ch no l o g y  R earra n ging p rod u ction machines i nto cel l s . It i s time consu m i n g and c o st l y to p l an a nd a c co m pl i s h th i s rearr a nge m ent, and the machines are not prod u cing d u r i ng the changeove r .

 It i s reaso n ab l e to b eli e ve that the proce s s i ng of e ach m e m b e r of a g i ven f ami l y i s s imi l a r , and t h is sho u ld result i n man u fa c turi n g efficiencie s . G r o u p T e ch no l o g y  The effi c iencies are general l y a c hi e ved by a r r a n g i n g the pro du ction e q u ipme n t into mach i ne gro u p s , or cells, to faci l itate work fl o w . Organi z i n g t h e prod u ction e qu i p m e nt in t o mac h ine ce l l s , w here each cell s pe c i a l i zes i n the p roducti o n of a pa r t famil y , i s ca l led “ ce l lular m a n uf a ctu r ing ” . 

 There are two m ajor ta s ks t h at a co m pany mu st u nderta k e when it implements group technolog y . G r o u p T e ch no l o g y  R earra n ging p rod u ction machines i nto cel l s . It i s time consu m i n g and c o st l y to p l an a nd a c co m pl i s h th i s rearr a nge m ent, and the machines are not prod u cing d u r i ng the changeove r . I d entifying t h e pa r t famili e s . If the p l a nt ma k es 10 , 00 d iffe r ent pa r t s , r e vie w i ng a ll of the pa r t d raw i n gs and groupi n g the pa r ts into fam i l i es i s a s ub s tantial ta s k t h at consu m es a s i gn i f i c ant a m o u nt of tim e . 

 C e l l u lar m a n u fact u ring i s a manufa c turi n g proce s s t h at prod u ces families of p a r ts wit h in a s i n g l e line or cell of machines operated b y m achini s ts who work only wi t hin the line or cell. A cell i s a s ma l l s c ale, cl e a r l y- d efined pr o du ction u nit wit h i n a lar g er fa c to r y . This u nit has c omp l ete res p onsib i l i ty for prod u cing a family of l i k e pa r ts or a prod u ct. All ne c es s ary m ach i nes and manpo w er a r e conta i ned w ith i n this cell, thus g i vi n g i t a de g ree of operat i o n a l a u tonom y . Ea c h wor k er i s expected t o have mast e red a f u ll ran g e of operating s k i l l s req u ired b y his or her cel l . Therefore, s ystematic job ro t a t i o n a nd tra i n i n g a r e n eces s ary  C e ll u l a r M an uf a c t ur i n g   con d it i ons for ef f ec t ive c ell d e v e lopm e nt. C o m plete wor k er tra i n i n g i s nee d ed to ensure t h at flexible w or k er a ss ign m ents can b e f u lfi l led.

+ D M M L L M M ~ ~ C e ll 2 M L D a va i l ab l e f o r ma r ke ting spa ce Fl oo C e l l I - L L A D G L A L L M D C e ll 3 R ec e iv ing an d A G G s h i ppin g

 “ A part f amily i s a coll e ction of parts t h at are s imi l ar either in geometric s h a pe and s ize or i n t he proces s ing s te p s requ i red i n their m a n uf a ctu r e .” Pa r t F a mil y   Part families are a central feat u re of group technolog y . There are always d ifferenc e s amo n g p arts i n a fam i l y , bu t the s imi l ari t ies a r e clo s e eno u g h that the p arts can b e gr o u ped into the s ame famil y .

 T wo p arts that are id e ntical i n shape a nd si z e but q u ite d i ff e rent in man u fact u rin g : 1,0 , 000 u ni t s / Y r . tolerance =  .0 1 i nc h , 1015 C R s te e l, nic k el p l at e ; 100/ Y r . tolerance =  0.001 inch, 18 - 8 st a inless steel.   Pa r t F a mil y

 T en pa r ts are d iff e rent i n s ize, s h ape, s imilar i n ter m s of man u fact u rin g . All pa r ts are mach i ned fr o m cylindrical pa r ts require d ri l l i ng and/or mill i n g . a nd material, but q u ite  s tock b y t urni n g; s ome Pa r t F a mil y

Similar pr is matic pa r ts req u ir i ng s i milar mill i ng operat i ons Pa r t F a mil y Di ss imilar pa r ts r e q u ir i ng s i milar machining operat i ons (hole d ri l l i ng, s u rface mil l in g ) I d entical d es i gned pa r ts r e q u ir i ng co m p l etely d ifferent man u fact u ring proce ss es

T r a di t i ona l P r o c e s s L ayo u t

P r o d u c t / G T L ayo u t

Co m p a r i s o n P r o c e ss T ype Layout G r o up T e c h nol o gy Layout The various machine too l s are arran g ed b y funct i o n . Ma c h i ne too l s are arr a n g ed into cell s . T o machine a g i ven pa r t, the workpiece m u s t b e tran s ported b etween the dep a r t ment s . Ea c h cell i s org a n ized to s pec i a l ize in the prod u cti o n of a pa r ticular p art famil y . This results i n m u ch material h a n d ling, lar g e i n - proc e s s inve n torie s , many m a c h i ne setups, lo n g man u fac t u ring lead ti m es, and hi g h cos t . The adv a n t a g es are, reduced workpiece h a n d l i n g, l ower s etup tim e s, fewer s et u ps (in some ca s e s , no s et u p changes are neces s ary), le s s i n - pro c ess invento r y and s horter le a d time s .

There are thr e e general m e t hods for s olvi n g pa r t families grouping. All the three are time consum i ng a nd inv o l v e the an a ly s i s of m u ch of d ata b y p ro p er l y tra i ned per s onne l . G r o up i n g Pa r t F a mili e s    Visual in s p ect i on Parts cl ass if i c a t i on and co d ing Pro d u ction Flow Analy s is (P F A)

The vi s u al i n spection m e thod i s the lea s t s oph is t i cat e d and lea s t expe n s i ve m ethod It involves the cl a ss i f i c ati o n of p a r ts into families b y looking at either the phy s i c al p arts or their photogr a p h s and ar r a n g i n g them into groups h a ving s imilar feat u re s . V i s u a l I n spe c t i o n M e t h o d

Pa r t s cl a ss i f ic at i o n an d c o di n g  Iden t i f ying s i mi l a r i t i es a n d di f f e r en c es a m o n g par t s a n d re l a t ing them by mea n s o f a coding sch e m e . Most time co n su m ing a n d co m p l i c a t ed me t ho d . 

 P r od u ction i d en t ifying groupings f l ow part t h at a n alys i s families (P F A) a n d is a m et hod for asso c iated mac h ine P r o d u c t i o n f l o w ana l y s i s (P F A ) uses the inform a ti o n co n ta i n ed on process p l a n s rather than o n part draw i n gs. W o r k parts w i th id e n t i c al o r si m ilar p rocess p lans are c l assif i ed in t o p art fami l ie s . The s e famil i es can then be used t o form log i c a l m a chine cells i n a g roup techn o l o gy layo ut . 

Pa r t s C l a ss i f ic at i o n an d Co di n g  Iden t i f ying s i mi l a r i t i es a n d di f f e r en c es a m o n g par t s a n d r e lating them by mea n s o f a cod i ng sc h eme. Most time co n su m ing a n d co m p l i c a t ed me t ho d . 

 R easons for using a c l assi f ication and coding syst e m  Design r etr i e v a l. A des i g n er faced w i th t h e t a sk of d e velo p ing a n ew part can use a des i gn ret r i e v a l system t o dete r mi n e i f a si m ilar part al r eady e x ist. A si m p l e change i n a n ex i s t ing part would ta k e much l e ss time than des i gning a w h ole n ew part from scratch. Aut o m a ted process p l a n n in g . The part code for a n ew part c a n be u sed t o search for process p l a n s for ex i s ti n g parts w i th i d en t i c al o r simi l ar code s . Ma c h i n e c ell des i g n . T h e part codes can be used to des i gn m a ch i n e c e l l s c a p a ble o f produ c ing all m em b ers o f a p articu l ar part fa m il y , using the co m posite part conce p t . Pa r t s C l a ss i f ic at i o n an d Co di n g  

 T h e pr i n c i p al fu n ctio n al areas that u t i l ize a p art clas s if i c at ion a n d coding sys t em are des i gn a n d m an ufac t ur i n g . Fe at ure s Co di n g S yst e m s o f  A c c o rd i n g l y , parts c l assi f i c a t ion sys t ems fal l s in t o three c at eg o r i e s : o n e of    Systems based o n part des i gn a t tri b utes Sys t ems based o n part m an ufac t ur i n g a t tributes Sys t ems ba s ed on both des i gn a n d m a n ufa c t u r i n g a t tribute s .

Fe at ure s o f Co di n g S yst e m s P ART DESIGN A T T RIBU T ES P ART MA N U F A CTU R I N G A T T RIBU T ES Ba s ic external sh a pe Major proce ss es Bas i c internal sh a pe Minor operations R otat i onal or re c tan g u lar s h ap e Opera t ion s e qu ence Lengt h- to - d i a m e ter ratio Major dimen s io n s Aspect ratio S u rface f ini s h Material types Machine tool Part f u nction Pro d u ction c y cle ti m e Major d imensions Batch s ize Minor d im e ns i ons Ann u al pro du ction T olerances Fixtures req u ired S u rface fini s h C u tting tools u s ed in m anufact u re

 T h e t h ree bas i c c o d i ng structures are Co di n g S t ru c t ur e    Chain T ype Struc t ure Hi e rarc h i c al Struc t ure Hyb r id Structure

 It is al s o known as a po l yco d e, in w h ich t h e in t er p re t a t ion of each s y mb ol in the s e qu ence is al w ays the s ame, it d oes not d epend on the value of the prece d ing sym b ol s . Cha i n - ty p e S t ru c t ur e

 It i s also k n o w n a s a mon o c o d e, i n w h ich t h e inter p retati o n of ea c h s u c ces s ive s y mb ol d epen d s on the value of the prece d ing s y mb ol s . H i e r a r c h ic a l S t ru c t ur e

 It is a co m b ination of hierarchical and chai n - type struct u res. H y b r i d st ru c t ur e

 T o d i s tin g u i s h the hiera r ch i cal c o d e and ch a in type s tru c tu r es, cons i d er a two - d i g it co d e n u m b er for a pa r t, s u ch as 1 5 or 2 5. S u pp o se first d ig i t sta n d s for the gener a l shape of t h e part, 1  m e ans the pa r t is cylindr i cal (rotat i o n al ), and 2 me a n s the geometry i s rectangula r . In h ierarchi c a l s tru c t u re, the inter p retation of the s econd d i g it d epen d s on the value of the fir s t d i g i t . If prec ed e d b y 1, the 5 m ig h t in d icate a l e ngth to d i ameter ratio; and i f p receded b y 2 , the 5 might indicate an a s pect r a t i o. In c h a i n type s truc t u r e, t h e s ymbol 5 would have the s ame m e aning whether prece d ed b y 1 or 2 . For exa m ple, i t m ight in d icate the ov e rall length of the par t . The advant a g e of the hiera r chi c al s tru c tu r e i s that i n general more information can b e inclu d ed i n a co d e of a g i ven n u m b er of d i g it s .  Co di n g S t ru c t ure s    

  The n u m b er of d i g its i n the co d e can ran g e b etween 6 to 3 0. Co d ing s che m es that con t a i n o n ly d es i gn d ata req u ire f e wer d i g it, perhaps 12 or few e r . Most modern cl a ss i f i c ati o n a nd co d ing s ys t em inclu d e b oth d es i gn and man u fact u ring d ata, and t h is u s u al l y req u ires 2 to 3 d i g it s . Co di n g S t ru c t ure s 

 Opitz cl a ss i f i c at i o n sy s tem – the Univ e rs i ty of Aach e n i n Ger m an y , nonpro p rietar y , Chain typ e . Bri s ch Sy s tem – (Bri s ch - Birn Inc.) CODE (Ma n ufactur i ng Data System, Inc.) C U TPLAN (M e tc u t As s ociates) DCLA S S (Bri g ham Y o u ng Univers i ty) MI C LASS s ystem Part Analog S y stem (Lo v elace, Lawren c e & Co ., In c .)       Im p o r tan t S yst e m s

 Wi l l it be u s ed for d e s ign retri e val or pa r t family man u fact u ring or b oth? S c ope and ap p licat i on What d epartments i n the co m pany wi l l u s e the s y s tem? What s pecific req u irements d o the s e d epartments have? What kin d s information m u s t b e co d e d ? H ow wide a range of pro du cts mu st b e co d e d ? How co m p l ex are the pa r t s , s h ape s , processes, tooli n g a n d so forth? Cost and time: The co m p any mu st consid e r the costs of i n st a l la t io n , tra i ni n g and mainte n a nce of their pa r ts cl a ss i f i c ati o n and co d ing s yste m .       F a c to r s t o Cons id e r  

 A d ap t ability to other s ystem s :  Can the cla s si f ication a nd co d ing s ystem b e r ea d i l y ada p ted to the exi s ting co m pany com p uter s ystems and d ata b a s es? Can i t b e r ea d ily integrated with other exist i ng co m p a n y proced u res, s uch a s pr o cess pla n n i ng, N C pro g r am m in g , and prod u ction s che d u l i ng?  F a c to r s t o Cons id e r  Man a gement prob l em s :  It i s impor t a n t that a l l i nv o lved manag e m e nt per s on n el be infor m ed and supportive of the sy s te m . Al s o, wi l l there b e any problems with the u nion? Wi l l coope r at i on a nd s u p p o rt for the s y s tem b e ob t a i ned from the various d epartments involved?  

 The basic code co n sists o f nine d i g i ts, wh i ch can be extended by add i n g four m o re di g its. F i rst n ine a re in t ended t o co n v e y both design a n d m an ufac t ur i n g da t a. Form Code     F i rst f i ve di g its, 1 2 345 a re cal l ed form code. It desc r ib e s the primary des i gn a t tributes of t he part, such as extern a l shape, (r o t a tio n al o r n on ro t a t io n al) And m ach i ned features (ho l es, thr e ads, gear t eeth a n d so o n . O P IT Z S y s t e m 

 T h e b a sic code co n sists of n ine di g its, w h ich can be extended by adding four m o re di g its.  First n ine are in t en d e d to conv e y bo t h des i gn a n d m an ufac t ur i n g da t a . Form C o de O P IT Z S y s t e m    F i rst f i ve di g its, 1 2 345 are cal l ed form code. It desc r ibes t h e pr i m a ry d esi g n a t tributes o f the part, such a s extern a l shape, (ro t a t io n al o r n on ro t a t io n al) And m a ch i n e d feat u res ( h oles, th r ead s , gear tee t h and so on . 

 Supp l eme n t a ry C o de  T h e n ext four di g its, 6 7 8 9, co n s t itu t e the suppl e m e n t a r y code, whi c h i n di c a t es s o me o f the a t tributes that would be usef u l i n m an ufac t ur i n g ( di m ensio n s, work m a t e r i al, st a rting shape a n d a c curacy Seco n dary C o de  T h e extra f o ur di g its, A B C D , are refe r red t o a s the O P IT Z S y s t e m  seco n dary c ode a n d a r e in t ended to iden t ify the p r oduction operation t ype a n d sequence.  T h e seco n dary code can b e des i gned by the user f i r m to serve i t own particular n eeds.

Su pplimentary code , Digit Form code Digit 5 Digit 2 Digit 3 Di g it 4 Di gi t 1 Part cl a s s 6 7 8 9 PI ane su r f ace machining Machining of p l ane s urf a c e s al h o 1 es M a ' m s h a pe R t o f a Io n al machini n g Internal shape ele m e nt Addi t l i Ion t e e th and forming Other holes and t e eth LID s 0.5 ~ External sh a p e e l ement 1 - 2 0, 5 < LID < 3 ~ t= . . .... ~ LID ~ 3 ~ ~ · c ~ Q) With deviation LID$ 2 With deviation LID>2 Special A / B ~3 A J C~4 ~ Machining of p l ane s u rfac e s Ot h er holes, teeth and forming 3 ~ 8 ~ Ro t a tional machini n g ~ Main s hap e . c _ :: (/l -a >. ---, 4 - 5 to) .... =' ~ 1-4 ~ 8- 'C (/l c Q) . _ ~ ~ e to) ~ -: <, « to) :E Main shape ~ ~ {/l , 'i 6 , 9 - eo ~ Machining of p l ane s urfaces Main bore and r otational machining Other hole s , teeth and fo rming ' C <a Main shape - . c - : 7 - · 8 AlB >3 i:. . ·· - s ~ / 8 c A / B ~ 3 AJC<4 Special Z Ma i n shap e 9

Di g it 4 Di git 5 Digit 3 Digi t 2 Dig i t 1 Plan e su rf ac e mac h i ning Au x iliary h o l es and ge a r t e eth Internal s hap e , in t ernal s h ap e el e ments Ex t er nal sha p e , e x te rn al s hap e el e m e nts P a rt cla s s N o surfac e m a ch i ni ng S m o oth , no s ha p e elemen t s No hol e, no bre a kth r ou g h No au x il i ar y hole I--'- L / D ~ . 5 I-- - Surfac e pl a ne a nd / or Axia l , no t on pitch c ir cl e d i am e te r No s hap e e le m e nt s No sh a pe ele m e nts cu rv ed directio n , in o ne ex tern a l 1 1 . "'0 = 1 0.5 < L / D < 3 1 ~ 1 I-- '"0 <l) <l) 0.. = <U f-- I-- 0..'"0 < = l) Ex te rn al pl a n e su rf ac e rel a ted by graduation a round the c ircle t ~ <l) A x i al o n pitch circle diame t er .s ;.... <l) o 2 I-- Thread 2 ...= Thread 2 ...- 3 2 L/D~ 3 2 ~ I=: . . . . . . = .. ..... ...= "'0 ca S ""' .... . I-- . = - CI) <l) 0.. 0.. g- S CZI ..... <l) R a dia l , not o n pit c h ci r cle diame t e r Axi a l a nd /or r a dial a nd/or o th e r d ire c t i on A xia l a nd / o r r a dial o n p e n and / o r o the r di re ct i o ns ;.... ..... <l) E xtern a l groov e ~ Func t ional gr o ov e Funct i o nal groo v e ..... ~ en I..; 3 3 CI) b.O 3 3 I-- a nd / or s lot I-- Z E x ter na l sp lin e No s hap e ele m e nts No s hape e lements -g <l) 4 4 ~ 4 4 ~ 4 - 5 ~ (p o lyg o n) < = l) ~ . . . . . . . = .. . . . . c . . : . E x te r nal plan e surfa c e a nd / or s lot , e xternal s plin e ..0 - ,CJ 5 5 Thread 5 5 I-- Thread . .... ...- 13 "'!:) <l) 0.. 0.. 0.. E 0.. Int ern al p lane surfac e and / or s lot Fun c tio n al g r oo v e Fun c tion a l gr o ov e . < . . l . ) . Spur g e a r t e e th 6 - 7 - 8 - 9 6 6 6 6 en CZI I-- t ""' . , Int e rnal s pline (p o l yg on ) ~ 0.. ca Be v e l g ea r t e eth F unctional c o ne 7 F un c tional co n e 7 7 7 - 8 - 9 -5 I=: <l) . . < . l . ) . ~ 1-1 <l) b.O -5 ~ . . . 8 ... Int e rnal and e x ternal poly g on , g r oo ve a n d / o r s lo t . ~ .... 8 = 8 Other g e ar t e eth Ope ra ting th r ead 8 Op e rat i ng thread 8 s All oth e rs All o th e r s All o t he rs 9 9 All oth e rs 9

 Solut i on    Length to Dia m eter Ratio: L/D = 1 . 5 Dig i t 1 = 1 Extern a l Shape: Bo t h e n ds stepp e d wi t h s c rew t h read on one end Dig i t 2 = 5 In t ernal Shape: Part conta i ns a t h rough h o le Dig i t 3 = 1 P l a n e surface m a ch i n ing: N o ne Dig i t 4 = Aux i l i ary holes, gear tee t h etc: N o ne Dig i t 5 =        Op i t z E x a m p l e

 MI C LASS s t a n d s for Metal Inst i tute Cla s sif i cati o n System and was d e veloped b y TN O , the Netherlands Organi z at i on for Ap p l i ed Scientific R esearc h . The M I C LA S S sy s tem was d e v eloped t o help automate and s tandar d ize a n u m b e r of de s i g n , prod u ction and ma n agement f u nction. The s e inc l u de : - Stan d ar d ization of engine e ring d rawings - R etri e val of d raw i ngs a c cor d ing to cla ss ificat i o n n u m b er - Standar d izat i on of proce s s p l ann i ng - A u tomated proce s s p l a nn i n g - S e lection of parts for process i n g on p artic u lar gro u ps of machine tools - Machine tool inves t m e nt ana l ys i s   MI C l a s s

 T h e MI CL ASS c l assificati o n n u mber c a n range from 12 t o 30 di g its. T h e f i rst 12 di g its are a u n iversal code t h at can be a p p l ied to a n y par t . Up t o 18 ad d it i o n al d i g its can be used t o code d a t a t hat are specific t o the particular c o m pa n y o r indus t r y . F o r example, lot size, pie c e time, cost da t a a n d o p eration sequ e n ce mi g ht be included i n the 18 suppl e me n t a ry di g its.  MI C l a s s 

MI C l a s s

 T h e work part a t t r i bu t es c o ded M ICL A SS n u mber are a s fol l ows in the f i rst 12 di g its of the 2 a n d 3 di g its MI C l a s s DIG I TS A TTRI B UTES 1st di g it Ma i n shape n d rd Shape e l eme n ts 4 t h di g it P osi t ion o f shape elemen t s 5 t h a n d 6 t h dig i t s Ma i n dimensio n s 7 t h di g it Dimension ratio 8 t h d i g i t Au x i l ia r y d i mension 9 t h a n d 10 t h di g its T olerance codes 11 t h a n d 12 t h di g its Material codes

 O n e o f the u n ique feat u r es o f the M I C L ASS sys t em i s that part can be coded using a c o mp u t er in t eractivel y . T o c l assify a g i ven part desig n , the user respon d s t o the se r i e s o f questio n s as k ed by the compute r . T h e n u m ber o f ques t io n s depe n ds o n the co m p l e x i t y o f the par t . For a simple part, a s few a s s e ven qu e s t io n s are n eed to c l assi f y the part.   MI C l a s s   For an a v erage part, the n umber of ques t io n s ra n ges between 10 t o 2 0. O n the basis o f the r espo n ses t o its ques t io n s, t he co m puter assi g ns a code n u mber t o t he part. 

 Its u niversal a ppli c ati o n i s i n d esi g n eng i ne e ring for r e tri e val of pa r t d es i gn d ata, bu t i t a lso h as a p plica t io n s i n manu f ac t uring proce s s p l anning, purcha s in g , tool d es i gn and inventory control. The CODE n u m b er has eig h t dig i t. For each d ig i t there are 16 pos s ible val u es (0 thro u gh 9 and A through F) w hich are u s ed to d escr i b e the pa r t ’ s d es i g n and man u fact u ring characteri s tic s . The i n itial d ig i t po s ition i n d i cates the b a s i c geometry of the pa r t and i s ca l led the Major Divi s ion of the CODE s ystem. Th i s digit w o u ld b e u sed t o s p ecify wh e ther the sh a p e was a cylinde r , flat p i ece, b lock, or ot h e r . The inter p retation of the r e mai n i n g s e ven d i g its d epends on the value of the fir s t d i g it, bu t t h e s e r e mai ni ng d igits form a c h a i n type s tru c ture. H e nce the CODE s ystem po ss es s es a hy b rid s tru c ture.   C OD E S y s t e m    

 T h e seco n d a n d thi r d digits provide a dd i tio n al in f orm a tion conce r n ing t h e basic geometry a n d p r inc i p a l m a n u factur i ng process for the par t . Dig i ts 4 , 5 and 6 spec i fy seco n dary m anufac t ur i n g process e s such a s threads, groo v es, slo t s, a n d so forth. Di g its 7 a n d 8 a n d used t o indica t e the o verall s ize o f the part ( dia m eter a n d l e n gth for a tu r n ed par t ) by c l assifying i t in t o o n e o f the 16 si z e ra n ges for each o f two dimensio ns .  C OD E S y s t e m 

C OD E S y s t e m

 The pa r t fami li e s 1 are d efined b y the fact t h at their m e mbe r s have s imilar d es i gn and man u fact u ring attr i bu te s . “ C o m p o s i te part i s the hyp o thetical p art that represents all of the d es i gn a nd c o rres p on d i n g man u f a ct u ring a ttributes po ss es s ed by the various individ u als i n the fami l y .” T o prod u ce o n e of the m e m b ers of the pa r t famil y , o p e r a t i ons are   Co m p o s i t e Pa r t Con c ep t ad d ed and de l eted corre s pond i ng to t he attr i bu tes of the particular part d esi g n.  1. “ A p a r t fa m ily is a c o ll e c tion o f p a r ts that are s i m ilar e ither in geo m e tric s ha p e and s ize o r in the p r o c e ss i n g s te p s r e quir e d in their m anufa c tu r e.” “Gr ou p T e c hn o l o g y is a manufa c tu r ing p hi l o s op hy in w hich simil a r p a rts ar e ide n tified and g r o u p e d to g e ther to ta k e advan t a g e o f their s i m ila r ities in d e s ign and p r o ductio n .” 

S i x simple par t s c o ns i st i ng of se v en Design and Ma n u f acturing at t ri b utes 

Co m p o s i t e Pa r t Con c ep t De s ign Feature Corr e spon d ing Opera t ion External C yl i nder T ur n ing Face of C yl i n der Faci n g C yl i n dr i cal Step T urni n g ( Ste p ) Sm o o t h Surface Extern a l C yl i n dr i cal G r inding Axial H o le Dri l l i n g C o u n terbore C o u n terboring In t ernal Threads T apping

 A m ach i ne cell wo u ld b e d es i gned to prov i d e all s e v e n m ac h i ni n g cap a b i l it i e s . The mac h ine, fixtures, and too l s would b e s et u p for effi c ient flow of work pa r ts through the cel l . In p r actice, t h e n u mber of desi g n a nd m an u f a ct u ring attrib u t e s would b e gr e ater than s ev en, a nd a l lo w ances w o u ld have to be ma d e for varia t i o ns i n ove r a l l s ize a nd s h ape of p arts i n the pa r t famil y . The co m po s i t e pa r t c o nce p t i s u s ef u l for vi s u a l iz i ng t he mach i ne cell d esi g n pro b le m .  Co m p o s i t e Pa r t Con c ep t  

 Pro d u ction fl o w a n alysis (P F A) i s a wel l - est a b l i shed m e t hodo l ogy u s ed for t ransfor m ing tradi t io na l f u ncti o n al la y o u t into prod u ct- oriented layout. The met h od u s es pa r t routings t o find natural clusters of wo r kstat i o ns for m ing prod u ction cells able to c omplete parts and co m ponents sw i ftly with s i m pl i fied m aterial flo w . P F A i s tradition a l l y a pplied t o jo b -s h o ps w ith f u nctio n al layouts, and after reo r g a ni z at i on wi t hin g r o u ps le a d t i m e s r e d u c e, q u al i ty improves and motivation among per s onnel improve s . P r o d u c t i o n F l o w A na l ys i s 

 The Ra n k O r d er Cl u ster i ng (RO C ) te c h n iq u e i s s p ecifi c a l ly a p plica b le i n p rod u ction flow a n alysi s . It i s an effici e nt a n d ea s y to u s e al g orit h m for grouping machines into cell s .  The a l gor i th m , wh i ch i s b a s ed on s orting r o ws and columns of the machine - pa r t incidence matrix, i s g i ven b elo w . 1. As s ign row b inary wei g ht a nd u s ing ca l cula t e a d ecimal the wei g ht f o r each for mu la R an k O r d e r C l u st er i n g i b ip 2     Deci m al wei g ht for row Where m i s the n u m b er of row and b i s a bin a ry n u m b er (0 or 1) 1 m   m  p p 

2 . Rank t h e rows from top to b o t tom i n o r der of decrea s i n g d ecimal wei g ht va l ues 3 . As s ign b i na ry weight and calcula t e colu m n us i ng the for mu la a deci m al weight for each   Deci m al wei g ht for colu m n Where n is the n u m b er of colu m n and b is a b inary n u m b er (0 or 1) pj R an k O r d e r C l u st er i n g 4. Rank the c olu m n f rom left to right in or d er of d ecreas i ng d eci m al weight val u es 5. Contin u e prece d ing steps u ntil there is no change in the po s it i on of each ele m ent in each row and c olu m n n j   b 2 n  p p  1

R an k O r d e r C l u st er i n g

R an k O r d e r C l u st er i n g

R an k O r d e r C l u st er i n g

R an k O r d e r C l u st er i n g

R O C E x a m p l e A B C D E F G H 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 4 1 1 5 1 1 1 6 1 1 1 1 1

 After p a r t - mach i ne group i n g h ave b een identified b y r ank ord e r cl u stering, the next pro b l e m i s to orga n ize the m achines into the most lo g ic a l arran g e m ent. Hollier Meth o d - 1 • This m e thod u s es the s ums of flow “Fro m ” and “ T o” ea c h mach i ne i n the cell. The m ethod can b e o u tlined as follows 1. Develop the Fro m - T o chart f rom part routing d a t a . The d ata cont a ined i n the chart indi c ates n u mbers of pa r t mo v es b e tween the machines i n the cel l . 2. Determ i n e t h e “From” and “ T o” s ums f or each m a chi n e . Th i s is a c c o m p l i s hed b y s u mming al l of the “Fro m ” trips and “ T o” trips for each machine. ➢ The “Fro m ” s u m for a mach i ne i s d ete r mined b y ad d ing the entries i n the corres p on d ing ro w . A rr an g i n g M a chi n e C e ll s – H o lli e r M e t h o d . i n ➢ The “ T o ” s u m is fo u nd by ad d ing the entries in the corr e s p on d ing col u m n.

3 . As s ign mach i nes to the ce l l b a s ed on m i nim u m “ F ro m ” or “ T o” su m s . T h e m achine having the smalle s t sum i s selecte d . ➢ If the minim u m value i s a “ T o” s u m, th e n the mach i n e p l aced at the b eginn i ng of the s e qu enc e . ➢ If the minimum value i s a “Fro m ” s um, t hen t h e mach i ne p l aced at the end of the s equenc e . is H o lli e r M e t h od - 1 is Ti e brea k er ➢ If a tie o c c u rs b etw e en minim u m “ T o” s u ms or minim u m “Fro m ” su m s, then the m ac h ine wi t h the m i ni mu m “Fro m / T o” rat i o i s s electe d .

➢ If b oth “ T o” and “Fro m ” s u ms are eq u al for a s ele c ted mach i ne, i t i s p a ss ed over and the mac h ine w i t h the next lowe s t s u m i s s electe d . ➢ If a m inim u m “ T o” sum i s e q u al to a m inimum “Fro m ” su m , then b oth machines are s elec t ed and p l aced at t h e b eginning and end of the s e qu ence, res p ectively H o lli e r M e t h od - 1 4 . R efor m at the Fro m - T o char t . After e a ch mach i ne h a s b een selecte d , rest r u ct u r e the F r o m - T o c h art b y eliminat i ng the row and column corres p on d i ng to the s elected mac h ine a nd recalculate the “Fro m ” and “ T o” s u m s . 5. R epeat s teps 3 and 4 u ntil all mac h ines have b een a ss i g ned

H o lli e r M e t h od - 1 1 35 S U M 50 45 40 S U M 30 45 50 10 To 1 2 3 4 Fr o m 1 5 25 2 30 15 3 10 40 4 10

H o lli e r M e t h od - 1 3 1 35 S U M 50 45 40 S U M 30 45 50 10 To 1 2 3 4 Fr o m 1 5 25 2 30 15 3 10 40 4 10

H o lli e r M e t h o d . 3 - 2 85 S U M 40 5 40 S U M 30 45 10 To 1 2 4 Fr o m 1 5 25 2 30 15 4 10

H o lli e r M e t h od - 1 3 - 2 - 1 35 S U M 10 25 S U M 25 10 To 1 4 Fr o m 1 25 4 10

H o lli e r M e t h od - 1 3 - 2 -1- 4 S U M S U M To 4 Fr o m 4

    D e velop the Fro m - T o chart Deter m ine the Fro m / T o rat i o for each machine Arran g e machines i n ord e r of decrea s ing Fro m / T o rat i o Ma c h i nes with hi g h rat i os a r e placed at t h e b eginni n g of the work flo w , a n d ma c hines w ith lo w rat i os are p laced at t h e end of t h e work fl o w . In c a s e of a tie, the mach i ne wit h the h igher “Fro m ” va l ue i s pl aced ahead of the machine with a lo w er value H o lli e r M e t h od - 2 

H o lli e r M e t h od - 2 3 - 2 -1- 4 1 35 S U M 50 45 40 S U M From / T o Ra t io 30 . 60 45 1 50 ∞ 10 . 2 5 To 1 2 3 4 Fr o m 1 5 25 2 30 15 3 10 40 4 10

10 15 H o lli e r M e tho d F l o w D i a gr a m 40 30 25 5 in 3 2 4 1 3 0 o u t 5 10 2 0 o u t

H o lli e r M e tho d E x a m p l e

H o lli e r M e tho d E x a m p l e

P r a c t i c e E x am p l e

P erc e ntage o f in- s e quence m o ves  Co m puted b y ad d ing a ll of t h e values r e pre s enting i n - s e qu ence mo v es and d ividing b y the total n u m b er of mo v es P erc e ntage o f backt r ack i ng m o ves P e r f o r m an c e M e as ur e  Deter m ined by s u m ming all of the values r epre s enting b acktrac k ing mo v es and d ividing b y the total n u m b er of mo v es

P ercentage o f in- sequence m o ves    In -s e qu ence mo v es = 4 0 + 3 0 + 2 5 = 95 T otal num b er of mo v es = 1 35 P ercentage of i n -s e qu ence mo v es = 9 5 / 1 35 = 7 . 4 % P e r f o r m an c e M e as ur e P erc e ntage o f backt r ack i ng m o ves    Backtrac k ing mo v es = 5 + 10 = 15 T otal num b er of mo v es = 1 35 P er c entage of b ac k trac k ing m ov e s = 1 5 / 1 35 = 11.1%

 - - Fle x i ble manufa c tur i ng sy s tem (FM S ) i s a A group o f h i gh l y au t o m a t ed G T m a ch i n e ce l l, consist i ng o f a g r oup o f proces s i n g wor k st a tio n s (usually CNC m a ch i n e t o ols), in t er c o n n e cted by a n au t oma t ed m a terial ha n dl i n g a n d s t orage sys t em, a n d control l ed by a d i stri b uted co m pu t er syste m . - I nt r o d u c t i o n -  T h e r eas o n the F MS i s called f le x ible i s that i t i s capable of proces s ing a v a r i ety o f di f f e rent part s t yles simult a n eou s ly a t the v a r i o u s workst a tio n s, a n d the mix o f part s t yles a n d qu a n tities o f production c a n be adj u s t ed i n response to c h a n g i ng demand pat t e r n s .  F MS is m o st suited f or the mi d -v a r i et y , mid-v o lume production ra n ge.

F M S S u i ta bili t y

 A mo r e app r opr i a t e t e rm for F M S would be ‘ f lex i b le au t o m a t ed m an ufac t ur i n g s y s t em . ’ T h e u s e o f the word “au t o m a t ed” would distinguish t h is t y pe o f pro d uc t ion techn o logy from o t her m a n ufac t ur i n g systems th a t are fle x i b le but n o t a ut o m a ted, s uch a s a m ann ed G T m a ch i n e ce l l .  F M S S u i ta bili t y  T h e w o rd “f l e x ibl e ” w o u ld distin g uish it fr o m o t her m an ufac t ur i n g sys t ems that are h ig h ly au t oma t ed but n ot f l ex i bl e , such a s co n ve n tio n al tra n sfer l i n e.

 T h e req u ir e m en t in manufac t ur i n g is to get the r i g ht m a terials o r parts t o the r i ght m a ch i n es a t the r i ght tim e . T oo much o r to o so o n c r eates bac k ed up e x cess i n -p r o c ess in v en t or y . T oo l i t t le o r to o late caus e s de l ayed work sched u l e s a n d id l e m a ch i n e s . T h e r esu l t i n ma n y cases i s a poor use o f cap i t a l, i n the form o f excess i n - process in v e n t o ry a n d/or u n derutilizat i on o f the equipmen t . T h e u n derut i liza t ion o f equipme n t and gross inef f i c ien c i e s e x ist i ng i n a v a st maj o r i ty o f ma n ufacturing industr i es.   N ee d o f F M S    Many of these i n effi c i e n c i es are c o m m o n d a y to da y disturba n ces w i thin the o v era l l m an ufac t ur i n g process.

 W h at is n e eded in t o day ’ s co m p etitive e n v ir o n m ent , re g ar d l e ss o f w h at produ c ts a p articular co m pa n y m a k es, is the capability t o eff e c t iv e ly m a nage a n d control the day to day d i sturba n ces whil e meeting cust o mer r e qui r ement s . T h i s i mplies t h a t :  T h e r e sho u ld be mi n imum de l ay betw e en ord e r p l ace m ent a n d order de l iver y . Qua l ity a n d r e l i abi l ity should be h i gh Opera t ing cos t s should be predict a ble a n d u n der co n tr o l R e p lac e me n t parts should be a v a i l able a n d a c cessible o n a quick t ur n ar o u n d basis. N ee d o f F M S     F M S p r o v ides a mea n s to m a n a ge a n d c o n t rol the u n co n tr o l l ab l e disturba n ces wh i le mee t ing cus t o m er dema n ds a n d requi r eme n t s .

1. W ork Sta t ions 2. Material Hand l ing and Storage System Co m p on e nt s o f F M S 3. Computer Con t rol Syst e m 4. Human R esources

 In the sys t em des i g n ed for m a chi n i n g opera t io n s, the pri n c i p le t y pes o f process i n g s t a t ion are CNC m a ch i n e t o ol s . Fol l owing workst a tio n s are also fou n d i n F M S: - Load/U n load s t a t io n s - Mac h ining s t a t io n s - o t her pro ce ssing s t a t ions such a s s h e et me t al fab r i c a t io n , pr e ss work i n g opera t io n , forg i n g process etc. - Assembly opera t io n s - In s pection opera t ion s t a t io n s s u ch a s - Co -ordina t e M e as u r i n g Mac h ine ( CM M ) a n d inspection probes a n d m a ch i n e vision In a d dition t o above, other opera t io n s a n d fu n ctio n s are of t en a c co m plis h e d such a s c l ea n ing part s , cen t ral co o lant de l iv e r y sys t ems for en t i r e F M S, a n d cen t ral i zed ch i p remo v al sys t em s .  W o r k S tat i on s 

 T h e m a t e r ial han d l i n g a n d s t orage sys t em in a f l e x ib l e ma n ufacturing system pe r forms the fol l ow i ng functio ns : - Allows ra n do m , indep en dent moveme n t of w orkparts between s t a t io ns . E n ables handling o f a var i ety o f w o rk p art co n f i g ura t io n s such a s p r ismatic a n d rot a tio n a l . P r o v id e s te m porary s t orag e . P r o v id e s co n ve n i e n t a c c e ss for loading a n d u n loa d ing work part s . Crea t es co m pa t ib i l i ty w i th c o mp u t er co n tr o l. M at er i a l H an dli n g S yst e m - - - -

 T h e F MS i n c l udes a dis t r i bu t ed co m puter sys t em that is in t e r faced t o the workstatio n s, materi a l handling sys t em, a n d o t her hard w are co m po n en ts .  A typical F M S computer system consists o f a central co m puter a n d mic r oc o m puters co n tr o lling t h e i n divi d ual m a ch i n es a n d o t her co m po n en ts . Co m pu t e r Cont r o l S yst e m  T h e fu n c t io n s pe r for m ed by the FM S co m puter co n tr o l sys t em can be grouped in t o the fol l owing ca t egor i e s : W orks t a t ion co n tr o l Distribution o f co n tr o l ins t ructio n s t o workst a tio n s P r od u ction co n tr o l T raf f ic control W orkp i ece m on itoring T o o l c ont r o l - - - - - -

  O n e additio n al co m po n ent i n the F M S i s human labo r . Hum a n s syste m . are n eeded to m a nage the opera t io n s of the  - - - - - - - Fun c t i ons typ i cally performed by humans i n c lud e : Loading raw workparts in t o the sys t em, Unlo a d i ng f i nish e d parts ( or assemb l i e s) f r om the system, Cha n g i n g a n d set t ing t o ols, P er f ormi n g equipment m a in t en an ce a n d re p ai r , P er f ormi n g N C part programming, P r ogra m ming a n d opera t ing the co m puter sys t em, a n d Man a g i n g the sys t e m . Hu m a n R e so ur c e s

1. F lexibility 2. FMS j u stification Ge n e r a l F M S Cons id er at i on s 3. M anage m ent co m mitm e nt and planning

 Fle x ibili t y t o so m e m a nufacturers mea n s co n vert i bi l ity – be i n g ab l e t o co n vert fr o m m an ufac t u r i n g o n e p r o du c t typ e , fami l y a n d / or v olume t o a n o ther w i t h i n the ma n u f acture r ’ s pr e determined tim e .  Thus, co n vertibi l ity may be the ‘ r ea l ’ be fle x ibili t y the m an ufac t urer req u ires, a n d it may do n e by m o re F l e xibili t y upg r ading o r alter i ng o f e x isting r esourc e s rat he r than the purc h ase o f a n F M S. General l y , f l ex i bi l ity re f ers t o : Vari e ty o f mix Ada p t a b i l i ty t o des i gn, p r oduction o r routing c h a n ges Mac h ine changeo v er by  - - -

 - Mac hi ne flex i bi li t y : the e a se w i th wh ich a m a chi n e can pro c ess v a r i o u s opera t io ns . Ma t eri a l h a ndling flex i bi li t y : a measure o f the ease w ith w hi c h dif f ere n t part t y pes can be tra n spor t ed a n d prope r ly positio n ed a t the var i o u s m a ch i n e t o ols i n a sys t e m . T y pe s o f f l e xibili t i e s Bas i c F l e xibili t y  - –  Operat i on flex i bi li t y : - a measure o f the ease w i t h which alterna t ive operation seque n ces can be used for process i n g a part t y pe.

 - V o lume flex i bil i ty a m e a s u re of a s ystem ’ s c a p abi l ity to b e operated pro f itably at d iffe r ent volu m es of the exi s ting pa r t type s . Expans i o n flex i bility the ability to bu i l d a s ystem a n d expand i t increm e ntal l y R o uting flex i bil i ty  -  - T y pe s o f f l e xibili t i e s S yst e m F l e xibili ty : – a m easure of the altern a tive paths t h at a p art can through a s ystem for a g i ven proce s s p l an P r o c e ss flex i bil i ty ef f ec t ively foll o w  - a m e a s u re of the volu m e of the s et of p art types that a s ystem can prod u ce wit h o u t incurring any s et u p P r o duct flex i bil i ty the volu m e of the s et of pa r t types that c an b e man u f a ct u r e d i n a s ystem with minor s et u p .  -

 - Program flex i bi li ty the ability o f a sy s tem t o run for reaso n ably lo n g pe r iods w i th o ut extern a l in t erven t ion Product i on flex i bi li ty T y pe s o f f l e xibili t i e s A ggreg at e F l e xibili ty :  - – t h e vo lume o f t h e s et o f part ty p es that a s y stem can produce wi t hout maj o r in v est m ent in capital equipment Mar k et flex i bi li ty  - the ab i l i t y o f a sy s tem t o ef f ic i e n t ly ad a pt t o c h a n g i ng m a r k et co n dition s .

 T h e c on cept o f FMS just i f i c a t ion i s m a jor obstacle t o t h e su c cess m an ufac t ur i n g in n o v a t ion a n d capabi l it y . T o inst a ll a n e w mac h in i n g center that wor k s o f f i ve people, for ins t a n ce, mea n t co m p aring th e ir salaries p l us b e n e f its to the cost o f the m a ch i ne .   In this m ann e r , t h e e q uipmen t ’ s purc h a s e was easi l y F M S Ju st i f ic at i o n justif i ed. ROI ( R et u rn O n In v est m en t ) i s the dr i vi n g fact o r . T radition a l j u s t i f i c a t ion t e ch n iques, based o n ROI a n d di r e ct labor c o st reductio n . F i n a n c ial pe o p l e are using formulas a nd a c cou n ting forms that include o n ly traditio n al o r stan d ard l i n e i te ms a n d benefits t o run the n umber s .   

 F MS pr o jec t s are m o re l i k e l y t o o c cur i n co m p a n i e s that p l an f r om t he to p down a n d im p l e ment f r om the bo t t o m up. P l a n n ing i s a distr i bu t ed dec i sion m a k i n g process. It in v olves, to p m a na g ement for l e ade r ship, di r ection, judgm e n t , maj o r dec i sion m a k i n g, a n d remo v ing road blocks; mid d le m a n ageme n t for imple m en t i n g change, ca r ry i n g out dec i sio n s, a n d m an aging resu l t s ;   - M ana ge m e nts ’ c o mmi t m e n t & p l ann i n g - - a n d p r oduce r s for doing the work a n d p r o v i d ing informatio n , insig h t a n d kn o w l edge.

 Man a gemen t ’ s responsi b ility of the co m mit m e n t and p l a n n ing effort, should be: Management m u s t b e avai l able to provide guidance a n d d irection. Co m m u nicat i o n i s neces s ar y , not only to m e m bers of the project team, bu t to all e m p l oye e s . M an age m ent mu st surro u n d the m selves with strong, c o m petent peopl e . - - M ana ge m e nts ’ c o mmi t m e n t & p l ann i n g - - There m u s t b e ability i n man a gement and f u nction as grou p . project team to - A c cepta n ce by management to c h a n ge ope r at i o n al a nd organizati o n a l layo u t. Brin g ing o u t s ide consultants t o a ss i s t or advise with FMS . -

R ed u ct i on i n the n u m b er of u ncontroll a b le variables I m prove opera t ion a l control through: R ed u cing the d epen d ence on hu m an co m m u nicat i on R emoving operators from the m achining s i te O b je c t iv e F M S o f R e du ce d irect labor c o s t: Elimin a ting d epen d en c e on hig h ly skil l ed m achini s ts I m prove run sh o rt En g ineeri n g chang e s , pro c essing cha ng es, c u tting tool failure and late m aterial d elivery respon s iven e ss cons is ting of:

Chang i ng prod u ct volu m es I m prove lon g - run a c co m mo d ati on s : Ne w prod u ct ad d it i ons and introd u ctions Eliminating m achine set up O b je c t iv e F M S o f Increase machine u til i zation b y: Uti l i z ing au t omated feat u res to r e p l ace m an u al interv e ntion R e du cing lot s izes R e d u ce inventory b y: I m proving inventory turno v er

F MS can be distingui sh ed a c cording t o the k inds o f opera t io n s th e y pe r for m : - P r ocess i ng v s. assemb l y operations T wo o t her ways t o clas s i fy FMS are by 1. Number of m a ch i n es ( W orks t a t io n s) a ) Single m a ch i n e ce l l ( n = 1) b ) F l ex i ble m an ufac t ur i n g ce l l (F M C) ( n = 2 o r 3) c) Fle x ible m an ufac t ur i n g sy s tem (F M S ) (n T y pe s o f F M S = 4 or m o r e ) 2 . L e vel of f l e x i b i l ity a ) Dedi c a t ed F M S b ) Ra n dom o rder F M S

Si n g l e M a chi n e C e l l

 It co n sist of a ful l y a u t o m a ted m a ch i n e capable of u n atte n ded opera t io n s for a time pe r iod lo n g e r than o n e m a ch i n e cyc l e. It i s ca p able o f p r oces s ing d i ffe r ent p art s t yl e s, respo n d i ng t o changes i n production sc h ed u l e , a n d a c cepting n ew part Si n g l e M a chi n e C e l l  in t roduc t io n s . simulta n eou s . In this case proces s i n g is seque n tial n ot

Si n g l e M a chi n e C e l l p h oto co u rtesy of Cincinnati Mil a cron

F l e xibl e M an uf a c t u r i n g C e l l

 It co n sists o f two o r thr e e pr o ces s ing w orks t a t ion and a part handling sys t e m . T h e part handl i ng system i s connected t o a lo a d / u n load s t a t io n . It i s capable o f simulta n eous production o f di f fe r ent part s . F l e xibl e M an uf a c t u r i n g C e l l  

F l e xibl e M an uf a c t u r i n g C e l l

 It has four o r more p r ocess i ng work s t a t ions ( typica l ly C N C m a ch i n ing cen t ers or tu r n ing cen t er s ) handling co nn ected me c hanic a l l y by a common part system and F l e xibl e M an uf a c t u r i n g S yst e m au t o m a t i c al l y by a distr i bu t ed co m puter sys t e m . It also inc l u d es n o n -p r oc e ssing work st a tio n s t hat support production b ut do not di r ectly partic i p a t e i n i t . e . g. part / pal l et wash i n g s t a t io n s, c o- ordina t e mea s ur i n g m a ch i n e s . T h ese f ea t ures si g n ifica n tly di f f e r en t i a te i t fr o m Fle x ib l e m an ufac t ur i n g ce l l (F M C ) .  

F l e xibl e M an uf a c t u r i n g S yst e m P hoto c ourte s y of Cincinnati Mil a cron

F M S S u mm a r i z e d

A ) De d icat e d FMS  A ded i ca t ed F M S is des i gned to produce a l i mited v a r i ety of part styles. The part fami l y is l i k e l y to be based on p r oduct commo n al i ty rather than geome t r i c sim i lar i t y . In s te a d of b e ing general purpose, the m a ch i n es can be des i gned for t he spec i f i c processes requi r ed to m a k e the l i mited part fami l y , thus inc r easing the p r oduction ra t e of the sys t em. L e v e l o f F l e xibili t y  

B ) Ran d om ord e r FMS    A ra n dom order F M S i s m o re appropr i a t e w h en t he part family i s lar g e, T h e r e are subs t antial v a r i a t io n s i n the part co n f i gura t io n , n ew part des i gns w i ll be in t roduced in t o the system L e v e l o f F l e xibili t y a n d engine e r i n g c hanges w i ll o c cur i n the parts produced a n d p r oduct i on sc h ed u le i s subje c t t o c h a n ge f rom day to da y . T o a c co m m o da t e these v a r i a t io n s, the ra n do m -o r der FM S mu s t be m o re f l ex i ble than the ded i ca t ed F M S. It i s equi p ped w i th ge n er a l pur p ose mach i n es t o d ead w i t h the v a r i a t io n s i n produ c t a n d i s cap a ble o f processi n g p arts i n v a r i o u s seque n ces (ra n dom order).  

L e v e l o f F l e xibili t y

  The layo u t of the F M S is est a bl i shed by the m a terial handling sy s te m . F i ve basic t ypes of F MS layo u ts 1. In - Line F M S L ayo u t Con f i gur at i o n 2. L o op 3. Ladder 4. Open Field 5. R ob o t - cen t red cell

   M ach i nes a n d handl i ng system are arranged i n a straig h t l i ne. Simp l est f o rm. T h e parts progr e ss f rom o n e wo r kst a tion t o the n e x t i n w e l l -d e fi n ed seque n ce w i t h work always m o vi n g i n o n e di r ectio n . N o bac k -f l o w .  In- li n e L ayo u t ( with ou t s e con d ar y par t han d li n g s y s te m )

L ine tra n sf e r sys t em w i th seco n dary part handling each work st a tion t o fac i l i t a te f l ow i n two d i r e ction sy s tem at In- li n e L ayo u t ( wit h s e con d ar y par t han d li n g s y s te m )

 T h e wo r kst a t i o n s are orga n i z ed i n a loop that i s served by a pa r t handling sys t e m . Parts u su a l l y f l ow i n one di r e ction aro u n d the loop w i th the capab i l i ty t o s to p a n d be tra n sfe r r e d t o a n y st a tio n . T h e load/u n l o ad statio n s are t y p i cal l y loca t ed a t one end o f t h e loo p .   L oo p L ayo u t

R ecta n gu l ar layout al l ows r e c i r c ulation of pal l ets b a ck to the f i rst s t a t ion in t he seque n ce af t er u n loading at the fin a l s t a t ion L oo p L ayo u t ( R e c tan g u l ar )

 T h e lad d er l a yout consists o f a loop w i th rungs betw e en t h e s t raight w h ich L a dd e r L ayo u t section of the loop, on workst a tio n s are loca t ed. R edu c t ion o f a v e r age trav e l d ista n ce  a n d tra n sp o rt time be t w e en the s t a t io ns .

Ope n - F i e l d L ayo u t  C on sists ladde r s.  Layout o f multiple lo o ps a n d is a p p r opr i a t e for process i n g lar g e fa m i l y o f part s .

 Uses o n e or as m o re the robo t s m a terial syste m . R ob o ts h a n dl i n g R o b o t - C e nt e r e d C e l l L ayo u t  equipp e d w i th gripp e r that we l l the of n on m a k e suited t he m for hand l ing ro t a t io n al a n d ro t a t io n al part s .

1. Increased ma c hine ut i l i z a t i o n , ▪ 2 4 h o u r ope r ati o n li k ely to j u s t ify in v estment, ▪ Auto m atic tool ch a nging, ▪ Q u e u es of p a r ts at s t ati o ns to m a x i mize u tilizatio n , ▪ D y n a mic s ch e dul i ng of p r od u c t ion t o a c co u nt for c h a n ges in de m a n d. 2. F e w er m a chi n es re q uir e d, 3. R e d uction in f a ctory floor space re q u i re d , 4. G r eater re s ponsiven e ss to ch a nge, 5. R e d uced inventory re q u i rem e nts, 6. L o w er m a nu fa cturing l e a d time s , 7. R e d uced labour req u ir e ments 8. Higher product i vi t y 9. Opportunity for un a tt e nded product i on 10. M a chi n es run over n ight ( " l i ghts out oper a tion " ) F M S B e n ef i t s

 L im i t ed abili t y t o a d apt t o c h a n ges i n p r oduct o r p r oduct mix ( e x. m a chines a r e o f l i m ite d ), ca p acity a n d the tooling n ecessary for products, e v en o f the sa m e fa m il y , i s n ot always feasib l e i n a g i ven FM S ) Subs t a n tial pr e -p l a n n ing ac t ivit y , Expensive, cos t ing mi l l i o n s o f dollars, T e c hn o log i c a l proble m s o f exa c t co m p o n ent positio n ing a n d pr e c i se timing n ecessary t o process a co m po n en t . , Soph i sticated ma n ufacturing system s .    D i s a dv anta ge s 

 Aut o ma t ed Gu i d ed V e h i c l e s ( A G V s), a s th e y are c o mm o nly re f er r ed t o “d r iver l ess trac t ors ” . An A GV i s a ba t tery operated, programm a ble a n d auto m a t ic guid e d m o bile ve h icle w i th o ut the n eed o f human in t erven t ion used for tr a n spor t ing the m a terial fr o m the st o r e s t o the shop / assemb l y l i ne o r vice versa. The m a in parts o f A GV are:  A u to m at e d Gu id e d V e hicl e s  1. Structu r e 2. D ri v e System 3. Steering Mechanism 4. P ower so u rc e - battery 5. Onboard computer for control

1. T owi n g 2. Pa l let T ruck T y pe s o f A G V s 3. U n it Load 4. Fork T ru c ks 5. Ass e mbly V ehicles

1. W i red Nav i ga t ion 2. G u i d e T ape Nav i ga t ion T y pe s o f Na vi g at i o n i n A G V s 3. Laser T arget Na v i g at i on

A G V s E x a m p l e s

  T ow i ng vehicle pulls one or more tra i lers to form a tra i n. T h i s type i s ap p li c a b le i n m oving h e avy p a y lo a ds ov e r large d i s tance in w a re h ou s es or factories with or witho u t interm e d iate p i c k u p and d rop off p oi n ts along the rout e . It cons is ts of 5 - 10 tra i lers and i s an efficient tran s port s ystem. T he towing cap a city i s u p to 6 0,000 poun d s .   T o wi n g V e h icl e

 Pallet trucks are used to m o ve pal l eti z ed loads alo n g pr e determined rou t es. T h e cap a city o f a n A GV pallet truck ranges u p t o s e veral th o us an d k i l o grams a n d so m e are capable o f ha n dl i n g two pal l et s . It i s ach i e ved for vertical m o ve m ent t o reach loads o n racks a n d sh e lves.   Pa ll e t T r u c k s

  The s e are u s ed to mo v e u nit loads from one s tat i on to anothe r . It i s also u sed for a u to m atic l o a d i n g and unl o a d i ng of p a llets rol l er s . Load cap a city ran g es u p to 2 5 k g or le ss . E s pecia l ly the s e vehicles are d es i gned to mo v e s mall load s . by means of   U n i t L oa d Ca rr i er s

 Fo r k trucks are equipp e d w i th f o rks wh ich can m o ve in vertical dir e ction to reach pa l le t ized l o ads o n rac k s a n d s t a n d s . T h is v e h i c le has a n abi l i t y to F o r k T r u c k s  load a n d u n load the pa l le t ized l o ads bo t h a t f lo o r l e vel a s we l l a s s t a n d s . It c a n position its forks a t a n y h e i g ht so t h at conv e y o rs or load sta n ds o f vary i n g height can be assed easi l y . 

 A GV asse m bly l i n e vehic l e is des i g n ed to carry suba s sembli e s through a sequ e n ce of a ssembly a f ini sh ed A sse mbl y L i n e V e hicl e workst a tio n s w h e re parts assemb l y . At asse m bly workst a tio n , are asse m bl e d t o bui l d  t he asse m bl e r t a k es the p arts on bo a rd a n d co m p l etes h i s t a sk o f asse m bl y .

 Dispatching, tracking a n d m on itor in g u n der rea l - t ime co m puter co n tr o l Be t ter resource u t i l i z a t ion Increased co n tr o l o v er m a terial f l ow a n d m o ve m ent R educed product dam a ge a n d l e ss m a terial m o ve m ent n oise R ou t ing consistency but f l e x i b i l ity      B e n ef i t s A G V s o f Opera t io n al en v i r o n me n ts reliability in haz a rdous a n d spec i al  Abi l ity t o inte r fa c e w i th v a r i o u s pe r ip h eral sys t ems, such as mach i ne t o ols, robo t s a n d co n v e y o r systems Hi g h loc at ion a n d positio n ing a c curacy 

L imi tat i on s o f A G V s  The sys t em r equires h i gh in v est m ent  A GV sys t em i s n ot suit a ble f o r sm a ll u n its

 Aut o ma t ed Gu i d ed V e hi c l e s can be used i n a w i de v a r i ety of appl i ca t io n s t o transport m a n y di f fer e n t typ e s o f m a terial includ i n g pal l ets, rol l s, racks, carts, a n d co n t a iners. 1. Raw Ma t er i al Handl i ng : -  A G V s are co m monly u s ed to tran s p ort raw materials pa p e r , s teel, ru b b e r , m e tal, and p l a s ti c . s u c h as A G V A pp lic at i on s  This inclu d es tran s p orti n g materials fr o m r eceiving to the warehouse, a nd d elivering materials d irectly t o prod u c tion line s . 2 . W ork - i n -P r ocess Move m en t : -  W ork - i n - Proc e s s mo v e m ent i s o ne of the fir s t appli c at i o n s where automated guided v ehicles were u s e d , and inc l ud e s the repetit i ve mo v ement of materia l s throug h o u t the m an u fact u ring proces s .

3. Pal l et Ha n dl i n g : -  Pa l let h a n d li n g i s a n extremely po p u l ar a p p l i c at i on for A G V s as repetit i ve mo v e m e nt of pallets is ve r y com m on in man u fact u ring and d i s trib u tion facil i tie s . A G V A pp lic at i on s 4 . F i n is h ed P r od u ct Ha n dl i ng : -  Mov i ng f i n i s h ed goods from man u fact u r ing t o s tor ag e or s h i ppi n g i s the final mo v e m ent of materi a ls b efore th e y are d eliver e d to c u stom e r s .  The s e mo v e m ents often re q u ire the gentle s t materi a l h a n d ling b ec a u s e the products are co m pl e te a n d s u bj e ct to d amage from rough handlin g .

 “ AS/ R S r e fers to a variety of compute r -controlled m e thods for auto m a t ically de p osi t ing a nd r e trieving loads f rom d efined sto r age loc a tions ” . AS/ R S are used w i d e ly i n bo t h Manufacturing a n d Distribution opera t io n s t o hold a n d bu f fer t h e f l ow o f m a terial m o vi n g through the pr o cess t o the ultima t e en d -use r .  A u to m at e d S to r a g e R e t r i e v a l S yst e m &

 P r oblems of co n ve n tio n al s t orage system:  Much time s p e nd for s ea r ching lo s t or da m a g e d products a nd ina c c u r a te records, O r d ers s p ending too much time in the factor y , c a u s ing c u stomer d el i ve r ies to b e la t e, W a ste much s p a c e , Exc e ss inventor y , W or k ers a re exp o s e d d a ng e rs.     N ee d o f ASR S  For the reso l ution of a bove p rob l ems AS R S is used, because    The op e r a tion a r e tot a lly autom a ted, Co m p u ter controll e d, F u lly inte g r a ted with f a ctory a nd wa r e h ou s e op e r a tion s .

1. S t orage s tructure 2. S/ R ( S t orage/ R etri e va l ) machine Co m p on e nt s o f ASR S 3. S t orage m odul e s e.g. pallets f o r unit loads 4. One or m ore p i cku p - and deposit sta t ion 5. Ex t ernal hand l i n g system

1. St o rage s t ructure    wh i ch is the rack framework ma d e of fa b ricated s teel s u p p orts the loads contained in the AS/RS 2. S/R m a ch i n e Co m p on e nt s o f ASR S is u s ed to a c co m p l i s h s tora g e tran s action, d elivering loads from the input s tat i on into s tora g e, and retri e ving loads from s tora g e and d elivering s tat i on. 3. St o rage m o dules    are the unit load containers of the s tored material. inclu d e pa l let s , s teel wire b a s k ets and container s , p l a s tic pans

4 . P i c k -a n d-deposit s t a t ion i s where loads are transferred into and o u t of the AS/R S . genera l ly loc a ted at t h e end of the ai s l e s for a c cess t he   external handling s ystem that b rin g s loads and ta k es loads awa y . to the AS/RS Co m p on e nt s o f ASR S 5. Extern a l handling sys t em b rin g s loads to the AS/RS and ta k es loads awa y . Example RTV ( R o b otic T ran s fer V ehicl e )  

Co m p on e nt s o f ASR S

          Impro v ed in v en t ory m an ageme n t R e l iab l e a n d imme d iate de l ive r y Space eff i c i ency Simp l i f i e d a n d fas t er in v en t ory response R educed lost o r misp l aced p a r t s, t o ols a n d f i xtures Design f l ex i bi l ity t o a c co m m o da t e a w i de ra n ge o f loads R educed labor cos t s R educed scrap a n d re w ork A c curate inven t ory a n d load location Increased u t i l i z a t ion po t en t ial B e n ef i t s ASR S o f

   The initial cost o f the AS R S is hi g h AS R S requi r es au t o m a t ed guid e d v eh i c l es or c o n v e y o rs AS R S is feasib l e o n ly for large m an ufac t ur i n g est a bl i shmen t s L imi tat i on s ASR S o f

 F M S is d i ff e r e nt f r om conve n tio n al ce l l by virtue of its central co m puter control hi g hly d e veloped s oftware co m p l ete pa r t tooling and m aterial han d ling flexi b il i ty and c ontrol rando m ness of prod u ction sched u l i ng and machinin g .      Ce ll u la r V s F l e x ibl e M a n uf a c t u r i n g  B o th s i mi l arities a n d di f fe r ence ex i s t s be t we e n ce l lu l ar ma n ufacturing a n d F M S.

 Si m ilariti e s  Simi l ari t ies e xi s t from the viewpoint that the l e vel of auto m ati o n f o r either cell or s ystem can vary d epen d ing u p o n how mu ch te c hnology and m on e y will b e ap p lied. C e ll u l a r V s F l e xibl e M an uf a c t ur i n g  Both cells and s ystems p o s s e s s m u lt i p l e pa r t p roc ess i ng pa r t pro g ram s tora g e cap a b i l it y . and  A u tomatic or s e m iauto m atic p art l oad i ng c an be a c co m m o d ate i n either cell or F M S . M a g az i ne, h o p p er guid e d v ehicle, m u lti s tat i o n s huttle  and robots c a n b e u s ed b oth i n c ell or FMS a c c ording to the s ize, type and co m p l exity of t h e cell or s ystem.

  Di f f e renc e s C e lls l ack ce n tral co m pu t er contr o l with rea l - time ro u ting, l oa d b alan c i ng s o f tware and prod u ction s che d u l i ng l o g ic . Wh i le FMS is co n nected to a high l e vel c omp u ter s yst e m wit h in the operat i o n . man u fact u ring  C e l l s a r e tool ca p a c ity constr a ined. T oo l s av a ila b le i n the poc k ets are l i mite d , wh i ch l i mits the pa r t va r ie t y prod u ced i n the cel l . C e ll u l a r V s F l e xibl e M an uf a c t ur i n g  FMS with a u tomated tool d elivery and tool m a n a gement can auto m ati c a l ly tran s fe r , excha n ge and migrate tools t h r o ugh centraliz e d co m puter control.  C e l l s genera l ly have le s s fle x ibil i ty than a n FMS and are rest r ict e d to a relat i vely ti g ht family of pa r t s . On the other hand, FMS has g re a ter d epth and b readth of flexibil i ty d ue to ran g e of pa r ts i n varyi n g lot s ize that can b e a c co m mo d ated in s ystem, random machine s c he du l i ng and auto m ated m aterial flow a n d mo v e m en t . 

 Lean i s a m e thodol o gy to reduce wa s te i n a man u fact u ring s ystem witho u t s a crificing pro du ctivity and q u alit y .  The general m e an i ng of le a n i s that i t con s ists of a s et of t oo l s that help to identify and elimina t e wa s te. Th a t wa s te can b e created thro u gh a n o v erb u rden and u n e v e nness i n wor k l o a d s . T h e re m ov a l of w a s te from any s ystem i mproves q u ality and prod u ction time, wh i le reducing cos t . So m e lean m anuf a ct u ring tool s i nclu d e KANBAN ( W ork Flow Visua l isat i o n ) , 5S, P oka Y o k e (Err r Proo f ), ROC, Cont r ol Charts et c . Le a n M an uf a c t ur i n g 

5 P r i n ci p l e s o f Le a n M an uf a c t ur i n g

 V alue. V alue i s al wa y s d e fined b y the c u st ome r ’ s needs f or a specif i c p r od u c t . V alue s t r ea m . O n ce the v al u e (e n d g oal) h as been d e t er m ined, the n e xt s t ep i s m apping the “ v a l ue s t r ea m , ” or a l l t h e s t e p s and p r ocesses i n v o l v ed i n t aking a specif i c p r od u ct f r om r a w m a t e r ials and del i v er i ng the final p r od u ct t o the c u s t om e r . Fl o w . A f t er the w a s t e has been r e m o v ed f r om the v alue s t r e am, the n e xt s t ep i s t o b e su r e t h e r e m aining s t e p s fl o w smoot h ly w it h n o i nt e r ru p ti o ns, de l a y s, or bo t tl e nec k s . Pul l . W ith i m p r o v ed fl o w , time t o ma r k et (or ti m e t o cu s t o mer) c an b e d r am a ti c a ll y i m p r o v e d . This ma k e s i t much eas i e r t o del i v er p r od u cts as needed, as i n “j u s t i n ti m e” manu f act u r i ng or del i v e r y . P er f ec t io n . Ac c omp l i s hing S t e p s 1 - 4 i s a g r e a t s t art, bu t the fifth s t ep i s perha p s the m o s t i m por t a n t: m ak i ng l e an thi n k i ng a nd p r ocess i m p r o v e m e n t part of y our c orp o r at e c u ltu r e . A s g ains c o n tinue t o pile u p, i t i s i m p o r t a n t t o r e m e m ber l e an i s n ot a s ta t ic s y s t em and r equi r es c on st a n t e f f ort and v i gilance t o p er f e c t .  5 P r i n ci p l e s o f Le a n M an uf a c t ur i n g   
Tags